欢迎登录材料期刊网

材料期刊网

高级检索

A multifunctional titanium Ti-24Nb-4Zr-7.9Sn alloy (abbreviated as Ti2448) with ultra-low elastic modulus and high strength has been developed recently for potential biomedical applications. in this study, the bone healing and stability of implants in a rabbit tibial fracture model were investigated using intramedullary nails made of both the Ti2448 and Ti-6AI-4V ELI alloys. X-ray radiographic analysis showed that the volume fractions of new calluses formed around the fractured tibia increased with implantation times up to 4 weeks in both groups but no obvious difference was found between the alloys at the same time point. The micro-CT analysis revealed that, in the distal end of the tibia. there were many new calluses around nails made of the Ti2448 alloy that were confirmed by histological observations. The above analysis was consistent with tensile testing results performed 4 weeks after implantation. The mean maximum tensile force to failure of the newly formed Calluses was similar between both groups whereas the mean maximum pull-out forces of the implanted nails were larger in the group of the Ti2448 alloy. Four weeks after fixation, no obvious difference in the degree of fracture healing was found between both groups. These results suggested that, in the early stage of fixation, the nails with ultra-low elastic modulus improved the new bone formation in the marrow cavity. (C) 2008 Elsevier B.V. All rights reserved.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%