采用常压化学气相淀积(APCVD)工艺在1000~1400℃温度范围内的(100)Si衬底上进行了β-SiC薄膜的异质外延生长.实验结果表明,随着淀积温度的升高,外延层由多晶硅向β-SiC单晶转变,结晶情况变好;但同时单晶生长速率却反而有所下降.
β-SiC thin films were heteroepitaxially grown on (100)Si substrates at a temperaturerange from 1000 to 1400℃ by atmospheric pressure chemical vapor deposition (APCVD) process.Experimental results show that the epitaxial layers change from polycrystalline silicon into singlecrystal β-SiC state with the deposition temperature s increasing, but the growth rates of singlecrystal films decrease inversely.
参考文献
[1] | Susumu N, Sadao A. Jpn J Appl Phys., 1994, 33: 1833--1834. [2] Andrew J S, Li J P. IEEE Transactions on Electron Devices , 1992, 39: 64. [3] Kong H S, Palmour J W, et al. Appl Phys Lett., 1987, 51 (6): 442--444. [4] Liaw P, Davis R F. J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, 1985, 132 (3): 642--648. [5] Yamaguchi Y, Nagasawa H, et al. Sensors and Actuators, 1996, A 54: 695--699. [6] Kobayashi M, Sugawara M, et al. Microelectric Eng., 1990, 11: 237--240. [7] Nagasawa H, Yamaguchi Y. Thin Solid Films, 1993, 225: 230. [8] Nagasawa H, Yamaguchi Y. Inst. Phys. Conf. Ser., 1994, 137: 71--74. [9] Yoshinobu T, Mitsui H, et al. J. Appl. Phys., 1992, 72: 2006. [10] Wahab Q, Glass R C, et al. J. Appl. Phys., 1997, 74 (3): 1663--1669. [11] Powell J A, Larkin D J, et al. Appl. Phys. Lett., 1990, 56 (14): 1353--1355. [12] Kimoto T, Matsunami H. J. Appl. Phys., 1994, 76 (11): 7322--7327. [13] Kimoto T, Matsunami H. J. Appl. Phys., 1994, 75 (2): 850--859. [14] Addamiano A, Sprague J A. Appl. Phys. Lett., 1984, 44 (5): 525--527. [15] Joseph S Shor, David G, et al. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (6): 1093--1099. [16] Makoto K, Masahiro D, Takashi H. Appl. Phys., 1993?, 74 (7): 4438--4445. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%