为了预测非屈曲织物增强复合材料的力学性能,建立了纤维束的正六边形单胞和非屈曲织物复合材料的长方形单胞,并重点推导了正六边单胞的方程边界条件。通过跨尺度逐级计算这两个单胞的有效弹性常数,得到了非屈曲碳纤维织物增强环氧树脂基复合材料的宏观有效弹性性能和强度。对该非屈曲织物复合材料在拉伸载荷下的累计失效进行了有限元损伤分析。结果表明:初始损伤发生在富树脂区或横向纤维束,损伤在富树脂区与横向纤维束内逐步扩展,最后向纵向纤维束扩展并迅速导致整体失效;非屈曲织物增强复合材料的面内拉伸模量的计算预测值非常接近实验值,面内拉伸强度计算值略小于实验值。
To predict the mechanical behaviors of non-crimp fabric reinforced composites, hexagonal unit cell (UC) and rectangular UC were developed to represent the fiber tow and composite, respectively. The equation boundary condition of the fiber tow UC was derived in detail. The macro-scale effective stiffness and strength of a non-crimp carbon fabric reinforced epoxy composite was obtained by calculating the effective elastic constants of the two UCs at different length scales. Finite element damage analyses were performed to study the progressive failure of the composite in tension. Results show that the initial damage occurs in either the resin pockets or the transverse tows. Damage develops within the resin pockets and transverse tows, and progresses into the longitudinal tows and causes the composite failure very quickly. The predicted value of tensile modulus of the non-crimp fabric reinforced composite is very close to experimental value, and the calculated value of tensile strength is slightly less than that of experimental value.
参考文献
[1] | Hogg P J,Ahmadnia A, Guild F J. The mechanical propertiesof non - crimped fabric - based composites [J]. Composites,1993,24; 423-432. |
[2] | Bibo G A, Hogg P J, Kemp M. Mechanical characterization ofglass and carbon - fiber reinforced composites made with non-crimp fabrics [J]. Composite Science and Technology, 1997,57: 1221-1241. |
[3] | Wood M D K, Sun X, Tong L, et al. The effect of stitchdistribution on mode I delamination toughness of stitchedlaminated composites: Experimental results and FEAsimulation [J], Composite Science and Technology. 2007,67: 1058-1072. |
[4] | Hep H,Himmel N. Structurally stitched NCF CFRPlaminates: Part 1 — Experimental characterization of in - planeand out - of - plane properties [J]. Composite Science andTechnology, 2011,71: 549-568. |
[5] | 唐绍锋,梁军,杜善义.含界面相的单向纤维增强复合材料三维应力场的二重双尺度方法[J].复合材料学报,2010,27(1): 167-172. |
[6] | 梁军,黄富华,杜善义.周期性单胞复合材料有效弹性性能的边界力方法[J].复合材料学报,2010, 27(2): 108-112. |
[7] | 赵琳,张博明.基于单胞解析模型的单向复合材料强度预报方法[J].复合材料学报,2010,27(5): 86-92. |
[8] | 焦志文,周储伟.圆管状立体机织复合材料的多尺度分析[J].复合材料学报,2010,27(5): 122-128. |
[9] | 张超,许希武,毛春见.三维编织复合材料渐进损伤模拟及强度预测[J].复合材料学报,2011,28(2): 222-230. |
[10] | Edgren F,Asp L E. Approximate analytical constitutivemodel for non-crimp fabric composites [J]. Composites: PartA, 2005, 36: 173-181. |
[11] | Hep H, Roth Y C, Himmel N. Elastic constants estimation ofstitched NCF CFRP laminates based on a finite element unit ~cell model [J]. Composites Science and Technology, 2007,67: 1081-1095. |
[12] | Gonzalez A, Graciani E, Paris F. Prediction of in - planestiffness properties of non-crimp fabric laminates by means of3D finite element analysis [J]. Composites Science andTechnology,2008,68: 121-131. |
[13] | Zhao L G,Warrior N A, Long A C. Finite element modellingof damage progression in non - crimp fabric reinforcedcomposites [J]. Composites Science and Technology, 2006,66 : 36-50. |
[14] | Mikhaluk D S, Tuong T C,Borovkov A I,et al. Experimentalobservations and finite element modeling of damage initiationand evolution in carbon/epoxy non - crimp fabric composites[J]. Engineering Fracture Mechanics, 2008,75: 2751-2766. |
[15] | Ivanov D S,Lomov S V,Bogdanovich A E,et al. Acomparative study of tensile properties of non - crimp 3Dorthogonal weave and multi - layer plain weave E - glasscomposites: Part 2 — Comprehensive experimental results [J].Composites: Part A, 2009,40: 1144-1157. |
[16] | Tserpes K I, Labeas G N. Mesomechanical analysis of non-crimp fabric composite structural parts [J]. CompositeStructures, 2009,87: 358-369. |
[17] | Drapier S, Wisnom M R. Finite - element investigation of thecompressive strength of non - crimp fabric based composites [J].Composite Science and Technology , 1999, 59: 1287-1297. |
[18] | Hep H,Himmel N. Structurally stitched NCF CFRPlaminates; Part 2 —Finite element unit cell based prediction ofin - plane strength [J]. Composites Science and Technology,2011,71: 569 - 585. |
[19] | 马立.RFI工艺成型两种环氧树脂基复合材料性能比较[J].宇航材料工艺,2008(2): 69-71. |
[20] | 马立.RFI工艺成型碳NCF-环氧5228A复合材料研究[J].玻璃钢/复合材料,2008(1): 21-24. |
[21] | 丁江平,潘利剑,范欣愉,等.国产CCF300碳纤维4轴向无屈曲织物层合板力学性能对比研究[J].高科技纤维与应用,2010,35(5): 26-31. |
[22] | 韩帅,段跃新,李超,等.不同针织结构经编碳纤维复合材料弯曲性能[J].复合材料学报,2011, 28(5): 52-57. |
[23] | 何海东,贾玉玺,丁妍羽,等.无弯曲纤维织物面内渗透率的结构相关性[J].复合材料学报,2011,28(5): 70-76. |
[24] | Li S G. General unit cells for micromechanical analyses ofunidirectional composites [J], Composites: Part A, 2001, 32;815-826. |
[25] | Li H Z, Kandare E,Li S G,et al. Micromechanical finiteelement analyses of fire - retarded woven fabric composites atelevated temperatures using unit cells at multiple length scales[J]. Computational Materials Science, 2012, 55: 23-33. |
[26] | Li H Z, Kandare E, Li S G,et al. Integrated thermal, micro-and macro-mechanical modelling of post-fire flexural behaviourof flame-retarded glass/epoxy composites [J]. ComputationalMaterials Science, 2012,59: 22-32. |
[27] | Li HZ, Li S G, Wang Y C. Prediction of effective thermalconductivities of woven fabric composites using unit cells atmultiple length scales [J]. Journal of Materials Research,2011, 26: 384-394. |
[28] | Edgren F,Mattsson D,Asp L E,et al. Formation of damageand its effect on non-crimp fabric reinforced composites loadedin tension [J]. Composites Science and Technology, 2004,64: 675-692. |
[29] | Puck A,Schlirmann H. Failure analysis of FRP laminates bymeans of physically based phenomenological models [ J ].Composites Science and Technology, 1998,58: 1045-1067. |
[30] | Puck A, Schurmann H. Failure analysis of FRP laminates bymeans of physically based phenomenological models [ J ].Composites Science and Technology, 2002,62: 1633-1662. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%