采用共沉淀法,用不同金属盐为Cu源和Zn源合成了一系列CuZnAl水滑石,以此为前体经600 ℃焙烧后制得相应催化剂. 用硝酸盐和醋酸盐合成的水滑石结晶度高,其衍生催化剂比表面积大、 Cu的分散性好且易于还原;而用硫酸盐和盐酸盐合成的水滑石结晶度差,其衍生催化剂比表面积小、 Cu的分散性差且不易还原. 反应评价结果显示,用硝酸盐和醋酸盐制得的催化剂活性高、反应稳定性好;而用硫酸盐和盐酸盐制得的催化剂由于低的Cu表面积以及S和Cl的毒化作用而几乎无催化活性. 在醋酸盐制备的催化剂上,产物干气中CO的浓度明显较低,在250 ℃和WHSV=3.28 h-1 的条件下约为0.03%~0.04%, 仅为硝酸盐所制催化剂上CO浓度的1/5;在210 ℃和WHSV=0.5 h-1 的条件下,该催化剂上甲醇几乎完全转化,同时CO浓度降至约0.005%. N2O滴定、 CO2程序升温脱附和程序升温还原结果显示,用醋酸盐和硝酸盐制备的催化剂具有极相近的Cu表面积和表面碱性,但前者CuO的还原峰温较后者低近70 ℃, 归因于ZnO与CuO间的强相互作用,这是催化剂具有良好选择性的可能原因.
参考文献
[1] | Shan WJ;Feng ZC;Li ZL;Jing Z;Shen WJ;Can L .Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods[J].Journal of Catalysis,2004(1):206-217. |
[2] | Agrell J;Birgersson H;Boutonnet M;Melián-Cabrera I Navarro R M Fierro J L G .[J].Journal of Catalysis,2003,219(02):389. |
[3] | Agrell J;Hasselbo K;Jansson K;Jrs S G Boutonnet M .[J].Applied Catalysis A-general,2001,211(02):239. |
[4] | Murcia-Mascarós S;Navarro R M;Gómez-Sainero L;Costantino U Nocchetti M Fierro J L G .[J].Journal of Catalysis,2001,198(02):338. |
[5] | Turco M;Bagnasco G;Costantino U;Marmottini F;Montanari T;Ramis G;Busca G .Production of hydrogen from oxidative steam reforming of methanol - I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor[J].Journal of Catalysis,2004(1):43-55. |
[6] | 汤颖,刘晔,路勇,朱萍,何鸣元.CuZnAl水滑石衍生催化剂上甲醇水蒸气重整制氢Ⅰ.催化剂焙烧温度的影响[J].催化学报,2006(10):857-862. |
[7] | 汤颖,刘晔,路勇,朱萍,何鸣元.CuZnAl水滑石衍生催化剂上甲醇水蒸气重整制氢Ⅱ. 催化剂组成的影响[J].催化学报,2006(11):987-992. |
[8] | Bond G C;Namijo S N .[J].Journal of Catalysis,1989,118(02):507. |
[9] | 杨飘萍,宿美平,杨胥微,刘国宗,于剑锋,吴通好,赵得熙,张泰善,李东求.尿素法合成高结晶度类水滑石[J].无机化学学报,2003(05):485-490. |
[10] | Günter M M;Ressler T;Jentoft R E;Bems B .[J].Journal of Catalysis,2001,203(01):133. |
[11] | Agrell J;Boutonnet M;Melián-Cabrera I;Fierro J L G .[J].Applied Catalysis A-general,2003,253(01):201. |
[12] | Fierro G;Lo Jacono M;Inversi M;Porta P Cioci F Lavecchia R .[J].Applied Catalysis A-general,1996,137(02):327. |
[13] | Lindstrom B;Pettersson L J .[J].Catalysis Letters,2001,74(1-2):27. |
[14] | Barton J;Pour V .[J].Collect Czech Chem Commum,1980,45(01):3402. |
[15] | Santacesaria E;Carra S .[J].Applied Catalysis,1983,5(03):345. |
[16] | Agrell J;Birgersson H;Boutonnet M .[J].Journal of Power Sources,2002,106(1-2):249. |
[17] | Jiang C J;Trimm D L;Wainwright M S;Cant N W .[J].Applied Catalysis A-general,1993,97(01):145. |
[18] | Monti D M;Cant N W;Trimm D L;Wainwright M S .[J].Journal of Catalysis,1986,100(01):17. |
[19] | Takezawa N;Iwasa N .[J].Catalysis Today,1997,36(01):45. |
[20] | Idem RO.;Bakhshi NN. .KINETIC MODELING OF THE PRODUCTION OF HYDROGEN FROM THE METHANOL-STEAM REFORMING PROCESS OVER MN-PROMOTED COPRECIPITATED CU-AL CATALYST[J].Chemical Engineering Science,1996(14):3697-3708. |
[21] | Idem R O;Bakhshi N N .[J].Industrial and Engineering Chemistry Research,1995,34(05):1548. |
[22] | Chan L;Griffin G L .[J].Surface Science,1986,173(01):160. |
[23] | Chen A K;Masel R .[J].Surface Science,1995,343(1-2):17. |
[24] | Gotti A.;Prins R. .Basic metal oxides as cocatalysts for Cu/SiO2 catalysts in the conversion of synthesis gas to methanol[J].Journal of Catalysis,1998(2):511-519. |
[25] | Higdon B W;Hobbs C C;Onore M J .[P].US 3 812 210,1974. |
[26] | Frost J C .[J].Nature,1988,334(6183):577. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%