欢迎登录材料期刊网

材料期刊网

高级检索

In this paper, the microstructure of WC-Co alloys with and without nano-additives was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hardness and fracture toughness was tested by using a Vickers hardness tester and a universal testing machine. The cutting test was carried out at di®erent feed velocities (250 r/min and 320 r/min), and the contact pairs are cutting tools and 45# steel bars. Results showed that the hardness and fracture toughness of WC-Co cemented carbides with nano-additives are higher than that of WC-Co cemented carbides without nano-additives, and they are increased 10.21% and 19.69%, respectively. The flank worn width and crater width of cutting tools decrease
greatly with the addition of nano-additives. For the nano-modified specimen with WC grain size of 7μm, both the flank worn width and crater width are the minimum after the cutting process. And there are little built-up layers and some pile-up regions on the flank face leading to high cutting performance for the  nano-modified cemented carbides. There are some melted regions on the flank face of cutting tools without nano-additives, and the WC grains on the cross section of alloys without nano-additives show severe fragmentation. The wear type of WC-Co is flank wear, and the wear mechanism is abrasive, adhesion and oxidation wear.

参考文献

[1] W.B. Liu, X.Y. Song and J.X. Zhang: J. Alloy. Compd., 2007, 458, 366.

[2 ] S.I. Cha, S.H. Hong and B.K. Kim: Mater. Sci. Eng. A, 2003, 351, 31.

[3 ] H. Juhr, H.P. Schulze and G. Wollenberg: J. Mater. Process. Technol., 2004, 149(1-3), 178.

[4 ] J. Shen, J.F. Sun and F.M. Zhang: J. Mater. Sci. Technol, 2004, 20(1), 7.

[5 ] M.G. Gee, A. Gant and B. Roebuck: Wear, 2007, 263(1-6), 137.

[6 ] L. Llanes, Y. Torres and M. Anglada: Acta Mater., 2002, 50(9), 2381.

[7 ] K. Bonny, P. De Baets, Y. Perea, J. Vleugels and B. Lauwers: Wear, 2010, 268, 1504.

[8 ] R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann and C.C. Berndt: Thin Solid Films, 2002, 416(1-2), 129.

[9 ] C.H. Xu, X. Ai and C.Z. Huang: Int. J. Refract. Met. Hard Mater., 2001, 19, 159.

[10] N.J. Petch: J. Iron Steel Ins., 1953, 174, 25.

[11] X.L. Shi, G.Q. Shao, X.L. Duan and R.Z. Yuan: J. Mater. Sci. Technol, 2005, 21(2), 353.

[12] S.I. Cha, K.H. Lee and H.J. Ryu: Mater. Sci. Eng. A, 2008, 486, 404.

[13] H. Li, K.A. Khor, L.G. Yu and P. Cheng: Surf. Coat. Technol., 2005, 194, 96.

[14] H.A. Abdel-Aal, M. Nouari and M. El Mansori: Wear, 2008, 265(11-12), 1670.

[15] Z.N. Farhat: Mater. Charact., 2003, 51(2{3), 117.

[16] C. Allen, M. Sheen, J. Williams and V.A. Pugsley: Wear, 2001, 250(1-12), 604.

[17] K. Bonny, P. De Baets, Y. Pereza, J. Vleugelsb and B. Lauwers: Wear, 2010, 268(11-12), 1504.

[18] J. Zhao, X.L. Yuan and Y.H. Zhou: J. Refract. Met. Hard Mater., 2010, 28(3), 330.

[19] H.F. Fischmeister and L.R. Olson: in Proc. Int. Conf. on Cutting Tool Mater., September 15-17, Ft. Mitchell, Kentucky, 1980, 111.

[20] S. Karagoz and H. Fischmeister: Steel Res., 1987, 58(8),353.

[21] P. Billgren: in Proc. First Int. on High Speed Steel Conf., March, 26{29, Leoben, Austria, 1990, 115-122.

[22] V. Leskovsek, B. Sustarsic and G. Jutrisaa: J. Mater. Process. Technol., 2006, 178(1-3), 328.

[23] T.W. Chenje, D.J. Simbi and E. Navarac: Mater. Design, 2004, 25(1), 11.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%