欢迎登录材料期刊网

材料期刊网

高级检索

通过热模拟试验建立TC18合金的Arrhenius型本构关系,采用有限元模拟方法系统研究变形温度、变形速率和摩擦因数等因素对TC18缩比盘件等温模锻过程的影响,从而得到该合金较合理的模锻工艺条件,并用于指导具体试验。结果表明:变形温度840℃、变形速率0.1 mm/s、摩擦因数0.03为该合金较合理的等温模锻变形条件;在有限元模拟工艺的指导下成功锻造出该合金盘件,并验证有限元模拟结果的正确性;同时,为其他钛合金复杂件的等温模锻工艺提供数值依据与技术指导。

Arrhenius constitutive relationship of TC18 Ti alloy obtained from thermal simulation test was used to simulate the isothermal die forging of reduced-scale TC18 disc by finite element method. The suitable deformation conditions were obtained and applied to guide the experiment through systemically investigating the influence of deformation temperature, rate and friction factor on the isothermal die forging process. The result show that the suitable isothermal die forging conditions are that the temperature is 840℃, rate is 0.1 mm/s and friction factor is 0.03. The TC18 Ti disc is successfully fabricated under the guidance of finite element simulation, while the accuracy of simulation is also verified by the forging experiment. The related investigation can provide the numerical and technological support for other complex components.

参考文献

[1] 焦园,刘东,刘杰,孙二举.盘类锻件轴向辗轧成形过程中的工艺参数优化[J].热加工工艺,2011(13):65-68.
[2] BOYER R;WELSCH G;COLLINGS E W.Materials properties handbook:Titanium alloys[M].Metals Park,OH:ASM International,1994:767-1006.
[3] MOISEYEV V N.Titanium alloys-russian and aerospace application[M].Oxfordshire:Taylor & Francis Group,2006:119-196.
[4] R. R. Boyer;R. D. Briggs .The Use of β Titanium Alloys in the Aerospace Industry[J].Journal of Materials Engineering and Performance,2005(6):681-685.
[5] 赵红霞,虞文军.航空用高强度BT22钛合金的研发和应用[J].航空制造技术,2010(01):85-86,90.
[6] 罗雷,毛小南,杨冠军,牛蓉蓉.BT22钛合金简介[J].热加工工艺,2009(14):14-16.
[7] 韩栋,张鹏省,毛小南,卢亚锋,奚正平,杨建朝.BT22钛合金及其大型锻件的研究进展[J].材料导报,2010(03):46-50.
[8] 庞克昌.航空锻件精化的重要途径-等温锻造技术[J].金属学报,2002(z1):356-359.
[9] 曲银化,孙建科,孟祥军.钛合金等温锻造技术研究进展[J].钛工业进展,2006(01):6-9.
[10] SRINIVASAN N;RAMAKRISHNAN N;VENUGOPAL R A;SWAMY N .CAE for forging of titanium alloy aero-engine disc and integration with CAD-CAM for fabrication of the disc[J].Journal of Materials Processing Technology,2002,124(03):353-359.
[11] 朱磊,张麦仓,董建新,庞克昌.TC11合金本构关系的建立及其在盘件等温锻造工艺设计中的应用[J].稀有金属材料与工程,2006(02):253-256.
[12] 陈希凯,李付国,张李骊,彭富华,黄永胜.基于组织均匀性目标的TC4合金盘形件等温成形工艺优化[J].宇航材料工艺,2006(06):46-51.
[13] YU Min,LUO Ying-she,PENG Xiang-hua,QIN Yin-hui.Numerical simulation and its application of rheological forming of titanium alloy vane disk[J].中国有色金属学会会刊(英文版),2006(z1):671-675.
[14] LI Xiao-li;LI Miao-quan .FE simulation for the forging process of TC6 alloy disc utilizing a microstructural model[J].Materials Characterization,2005,55(4/5):362-370.
[15] 张鹏省,毛小南,韩栋.航空航天用钛合金盘件开发与应用[J].钛工业进展,2011(03):6-8.
[16] Yanchun Zhu;Weidong Zeng;Xiong Ma;Qingan Tai;Zhihua Li;Xiaoguang Li .Determination of the friction factor of Ti-6Al-4V titanium alloy in hot forging by means of ring-compression test using FEM[J].Tribology International,2011(12):2074-2080.
[17] 瓦利金 N.莫依谢耶夫;董宝明;张胜;郭德伦,梁慧凤,朱知寿.钛合金在俄罗斯飞机及航空航天上的应用[M].北京:航空工业出版社,2008:75-79.
[18] BOYER R;EYLOND R.Application of beta titanium alloys in airframes[A].Warendate,PA:TMS,2003:335-346.
[19] 黄伯云;王德志.中国材料工程大典-有色金属材料工程[M].北京:化学工业出版社,2006:54-107.
[20] ZENER C;HOLLOMOM J H .Effect of strain-rate upon the plastic flow of steel[J].Journal of Applied Physics,1994,15(01):22-27.
[21] SELLARS C;MCTEGART W .On the mechanism of hot deformation[J].ACTA METALLURGICA SINICA,1966,14(09):1136-1138.
[22] 杨松涛,李继文,魏世忠,徐流杰,张国赏,张二召.纯钼板坯高温塑性变形行为及本构方程[J].中国有色金属学报,2011(09):2126-2131.
[23] 李飞,吴伏家.TC4钛合金等温锻造工艺数值模拟[J].机械工程与自动化,2008(02):74-75.
[24] 吴伏家,尹晓霞,赵长瑞.TC4钛合金等温锻造过程的数值模拟和实验研究[J].锻压技术,2009(05):147-150.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%