欢迎登录材料期刊网

材料期刊网

高级检索

介绍了几种轻质金属-铝氢化物贮氢材料的吸放氢机理和研究进展.轻质金属-铝氢化物贮氢密度高,但存在动力学性能差、放氢温度高、可逆反应程度低等缺点,目前主要通过掺杂催化剂、降低材料的颗粒尺寸等方法来创提高吸放氢的速率和效率.随着研究的深入,轻质金属-铝氢化物在贮氢方面将有广阔的发展前景.

参考文献

[1] Brenda Johnston;Michael C. Mayo;Anshuman Khare .Hydrogen: the energy source for the 21st century[J].Technovation: The International Journal of Technological Innovation, Entrepreneurship and Technology Management,2005(6):569-585.
[2] Bogdanovi B;Schwickardi M .Ti doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J].Journal of Alloys and Compounds,1997,253-254:1.
[3] Schüth F;Bogdanovi B;Felderhoff M .Light metal hydrides and complex hydrides for hydrogen storage[J].Chemical Communications,2004,20:2249.
[4] Maximilian Fichtner;Jens Engel;Olaf Fuhr .Nanocrystalline aluminium hydrides for hydrogen storage[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2004(1/2):42-47.
[5] Dedrick D E;Kanouff M P;Replogle B C et al.Thermal properties characterization of sodium alanates[J].Journal of Alloys and Compounds,2005,389:299.
[6] Ozolins V;Majzoub E H;Udovic T J .Electronic structure and rietveld refinement parameters of Ti-doped sodium alanates[J].Journal of Alloys and Compounds,2004,375:1.
[7] Jensen C M;Gross K J .Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material[J].Applied Physics A:Materials Science and Processing,2001,A72:213.
[8] Bogdanovic B;Brand R A;Marjanovic A et al.Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials[J].Journal of Alloys and Compounds,2000,302:36.
[9] Gomesa S;Renaudina G;Hagemannb H et al.Effects of milling,doping and cycling of NaAlH4 studied by vibrational spectroscopy and X-ray diffraction[J].Journal of Alloys and Compounds,2005,390:305.
[10] Haiduc A G;Stil H A;Schwarz M A et al.On the fate of the Ti catalyst during hydrogen cycling of sodium alanate[J].Journal of Alloys and Compounds,2005,393:252.
[11] Gross K J;Majzoub E H;Spangler S W .The effects of titanium precursors on hydriding properties of alanates[J].Journal of Alloys and Compounds,2003,356-357:423.
[12] Weifang Luo;Karl J. Gross .A kinetics model of hydrogen absorption and desorption in Ti-doped NaAlH_4[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2004(1/2):224-231.
[13] Wang P;Jensen C M .Method for preparing Ti-doped NaAlH4 using Ti powder:observation of an unusual reversible dehydrogenation behavior[J].Journal of Alloys and Compounds,2004,379:99.
[14] Sandrock G;Gross K;Thomas G .Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates[J].Journal of Alloys and Compounds,2002,339:299.
[15] Anton D L .Hydrogen desorption kinetics in transition metal modified NaAlH4[J].Journal of Alloys and Compounds,2003,356-357:400.
[16] Ragaiy A Zidan;Satoshi Takara;Allan G Hee et al.Hydrogen cycling behavior of zirconium and titanium-zirconium-dopedsodium aluminum hydride[J].Journal of Alloys and Compounds,1999,285:119.
[17] Brinks H W;Hauback B C;Norby P et al.The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction[J].Journal of Alloys and Compounds,2003,351:222.
[18] Chen J;Kuriyama N;Xu Q et al.Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6[J].Journal of Physical Chemistry B,2001,105:11214.
[19] Blanchard D;Brinks H W;Hauback B C et al.Desorption of LiAlH4 with Ti-and V-based additives[J].Materials Science and Engineering,2004,B108:54.
[20] Wiench J W;Balema V P;Pecharsky V K et al.Solid-state 27 Al NMR investigation of thermal decomposition of LiAlH4[J].Journal of Solid State Chemistry,2004,177:648.
[21] Balema VP;Balema L .Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides[J].Physical chemistry chemical physics: PCCP,2005(6):1310-1314.
[22] Andrei C M;Walmsley J;Blanchard D et al.Electron microscopy studies of lithium aluminium hydrides[J].Journal of Alloys and Compounds,2005,395:307.
[23] L(φ)vvik O M;Opalka S M;Brinks H M et al.Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6[J].Physical Review B:Condensed Matter,2004,69:134117.
[24] Chung S C;Morioka H .Thermochemistry and crystal structures of lithium,sodium and potassium alanates as determined by ab initio simulations[J].Journal of Alloys and Compounds,2004,372:92.
[25] Easton D S;Schneibel J H;Speakman S A .Factors affecting hydrogen release from lithium alanate (LiAlH4)[J].Journal of Alloys and Compounds,2005,398:245.
[26] Balema V P;Wiench J W;Dennis K W et al.Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling[J].Journal of Alloys and Compounds,2001,329:108.
[27] Mirna Resan;Michael D. Hampton;Janice K. Lomness;Darlene K. Slattery .Effect of Ti_x Al_y catalysts on hydrogen storage properties of LiAlH_4 and NaAlH_4[J].International journal of hydrogen energy,2005(13/14):1417-1421.
[28] L(φ)vvik O M .Adsorption of Ti on LiAlH4 surfaces studied by band structure calculations[J].Journal of Alloys and Compounds,2004,373:28.
[29] Andreasen A;Vegge T;Pedersen AS .Dehydrogenation kinetics of as-received and ball-milled LiAlH4[J].International Journal of Quantum Chemistry,2005(12):3672-3678.
[30] Fichtner M;Fuhr O;Kirchr O .Magnesium alanate-a material for reversible hydrogen storage[J].Journal of Alloys and Compounds,2003,356-357:418.
[31] Hiroyuki Morioka;Kenichi Kakizaki;Sai-Cheong Chung .Reversible hydrogen decomposition of KAlH_4[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2003(1/2):310-314.
[32] Schulz R;Huot J;Liang G et al.Recent developments in the applications of nanocrystalline materials to hydrogen technologies[J].Materials Science and Engineering A,1999,267:240.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%