采用热旋锻工艺制备了纳米复合W-4.5%ThO2阴极材料,为了对其抗烧蚀性能进行研究,在氩弧焊机(GTA)上与商用W-2%ThO2和W-4.5%ThO2电极进行了比较试验.结果表明,这种新型电极的密度接近于全致密,其组织结构与目前工艺生产的商用电极完全不同,粒径小于200 nm的ThO2颗粒弥散分布于钨基体晶粒内.纳米复合W-4.5%ThO2阴极材料的起弧性能是3种测试电极中最好的,抗烧蚀性能得到明显改善,说明电极的性能主要受ThO2含量和粒度的支配.
参考文献
[1] | 张晖,丁秉钧.纳米复合W-氧化物电极材料的电子发射特性[J].稀有金属材料与工程,2000(01):53-56. |
[2] | Wittenauer J P;Nieh T G;Wadsworth J .[J].Current Advances in Materials and Processes,1992,9:28-37. |
[3] | Fauchais P.;Vardelle A. .Thermal plasmas[J].IEEE Transactions on Plasma Science,1997(6):1258-1280. |
[4] | Knight R;Smith R W;Apelian D .[J].International Materials Reviews,1991,36(06):221-252. |
[5] | Zhou X;Heberlein J V R;Pfender E .[J].IEEE Transactions on Circuits and Systems Part II:Analog and Digital Signal Processing,1994,17A1:107-112. |
[6] | Zhou X.;Heberlein J. .An experimental investigation of factors affecting arc-cathode erosion[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,1998(19):2577-2590. |
[7] | GuileA E.[J].Proc IEEE Rev,1971:1131-1134. |
[8] | Sadek A A;Ushio M;Matesuda F .[J].Metallurgical and Materials Transactions,1990,21A:3221-3236. |
[9] | Zhang H;Chen X F;Yang Zh M;Ding B J .[J].Materials Letters,1999,38:401-405. |
[10] | Wang Y;Ding B .[J].IEEE Transactions on Circuits and Systems Part II:Analog and Digital Signal Processing,1999,22(03):467-472. |
[11] | Zhang H;Yang Zh M;Ding B J .[J].IEEE Transactions on Circuits and Systems Part II:Analog and Digital Signal Processing,1999,22(03):455-459. |
[12] | Lenel F V.Powder Metallurgy[M].Princeton,NJ:Metal Powder Industries Federation,1980:339-340. |
[13] | 诸葛飞,王发展,张晖,丁秉钧.纳米复合W-6%ThO2和W-2%ThO2阴极材料的性能对比[J].稀有金属材料与工程,2003(02):141-143. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%