在常压下通过熔渗工艺将AlSi7Mg合金渗入由AlN粉末模压成形、预烧所获得的预烧结坯中,得到了不同Al含量的Al/AlN复合材料。采用X射线衍射仪对复合材料的相组成进行了测试,采用金相显微镜和SEM对其显微组织进行了观测,并对不同Al含量的Al/AlN复合材料的维氏硬度、抗弯强度、热膨胀系数及导热系数等进行了测试分析。结果表明:在900℃下,N2气氛中通过熔渗工艺可以制备出相对密度高于98.5%的Al/A1N复合材料,且在整个制备过程中AlN坯体尺寸几乎没有变化;Al/AlN复合材料的硬度和强度随Al含量的增加而降低,导热系数和热膨胀系数则随Al含量增加有所增加;A1体积分数为38%和62%时,Al/AlN复合材料维氏硬度分别为HV715和HV203,抗弯强度分别为492MPa和388MPa,室温导热系数分别为73w/(m·K)和120w/(m·K),室温至200℃的平均线膨胀系数分别为8.60×10^-6K^-1和1.11×10^-5K^-1;Al/AlN复合材料的热膨胀系数与Al含量的关系符合Kerner模型。
Al/AlN composites with different Al content were prepared by infiltrating AlN preforms with molten AISi7Mg alloy. Phase composition of the composites was characterized by XRD. Microstructure of the composites was observed by optical microscope and SEM. Mechanical and thermal properties of the composites with different Al content were also tested. The results show that Al/AlN composites with relative density of more than 98.5% can be obtained by infiltrating the AlN preforms with different porosity at 900℃ in N2 atmosphere. There is nearly no shape and dimension change of AlN preforms during the infiltration process. The mechanical and thermal properties of the composites vary with Al content. As Al volume fraction varies from 38% to 62%, the Vickers hardness of the composites decreases from HV 715 to HV 203, the bending strength decreases from 492 MPa to 388 MPa, the room temperature thermal conductivity of the composites increases from 73 W/(m K) to 120 W/(m K), and the mean linear thermal expansion coefficient (TEC) between room temperature and 200 ~C varies from 8.60× 10-6 K-1 to 1. 11×10-5 K-1. The results also show that the relation between the TEC and A1 volume fraction of the composites agrees with the Kerner model.
参考文献
[1] | Zhao M, Wu G H, Zhu D Z, et al. Effects of thermal cycling on mechanical properties of AlNp/Al composite [J]. Materials Letters, 2004, 58(12/13): 1899-1902. |
[2] | Wang J H, Yi D Q, Su X P, et al. Properties of submicron AlN particulate reinforced aluminum matrix composite [J]. Materials and Design, 2009, 30(1): 78-81. |
[3] | Chedru M, Vicens J, Chermant J L, et al. Aluminium-aluminium nitride composites fabricated by melt infiltration under pressure [J]. Journal of Microscopy, 1999, 196: 103-112. |
[4] | Lee L G, Ma H A, Lee X L, et al. Preparation and characterization of Al/AlN composites sintered under high pressure [J]. Journal of Materials Science, 2007, 42(22): 9460-9464. |
[5] | Li D F, Huang J L, Chang S T. The mechanical properties of AlN/Al composites manufactured by squeeze casting [J]. Journal of the European Ceramic Society, 2002, 22(2): 253-261. |
[6] | Lee K B, Sim H S, Kwon H. Fabrication of Al/AlN composites by in situ reaction [J]. Journal of Materials Science, 2006, 41(19): 6347-6352. |
[7] | 黄 强, 金燕萍, 顾明元. 电子封装用金属基复合材料的制备 [J]. 材料导报, 2002, 16(9): 18-19. |
[8] | 崔 岩, 陈续东. 低膨胀、超高模量铝基复合材料及其无压浸渗制备加工技术[J]. 中国有色金属学报, 2004, 14(S3): 33-36. |
[9] | Aghajanian M K, Rocazella M A, Burke J T, et al. The fabrication of metal matrix composites by a pressureless infiltration technique [J]. Journal of Materials Science, 1991, 26(2): 447-454. |
[10] | Cook A J, Werner P S. Pressure infiltration casting of metal matrix composites [J]. Materials Science & Engineering A, 1991, A144: 189-206. |
[11] | Nagendra N, Rao B S, Jayaram V. Microstructures and properties of Al2O3/Al-AlN composites by pressureless infiltration of Al-alloys [J]. Materials Science & Engineering A, 1999, A269(1/2): 26-37. |
[12] | Liu J W, Zheng Z X, Wang J M, et al. Pressureless infiltration of liquid aluminum alloy into SiC preforms to form near-net-shape SiC/Al composites [J]. Journal of Alloys and Compounds, 2008, 465(1/2): 239-243. |
[13] | McCormick A L, Aghajanian M K, Marshall A L. The effect of particle size, particle loading and thermal processing conditions on the properties of alumina reinforced aluminum metal matrix composites [J]. Ceramic Engineering and Science Proceedings, 2010, 30(5): 105-111. |
[14] | Rhee S K. Wetting of ceramics by liquid aluminum [J]. Journal of the American Ceramic Society, 1970, 53(7): 386-389. |
[15] | Rodríguez-Reyes M, Pech-Canul M I, Parras-Medecigo E E, et al. Effect of Mg loss on the kinetics of pressureless infiltration in the processing of Al-Si-Mg/SiCp composites [J]. Materials Letters, 2003, 57(13/14): 2081-2089. |
[16] | Wang S R, Wang Y Z, Wang Y, et al. Microstructure and infiltration kinetics of Si3N4/Al-Mg composites fabricated by pressureless infiltration [J]. Journal of Materials Science, 2007, 42(18): 7812-7818. |
[17] | Geiger A L, Jackson M, Low-expansion MMCs boost avionics [J]. Advanced Materials & Processes, 1989, 136(7): 23-28. |
[18] | Turner P S, Res J. Thermal expansion stresses in reinforced plastics [J]. Journal of Research of the National Bureau of Standards, 1946, 37: 238-241. |
[19] | Kerner E H. The elastic and thermo-elastic properties of composite media [J]. Proceedings of the Physical Society, 1956, 69: 808-810. |
[20] | Davis L C, Artz B E. Thermal conductivity of metal-matrix composites [J]. Journal of Applied Physics, 1995, 77(10): 4954-4960. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%