欢迎登录材料期刊网

材料期刊网

高级检索

利用金属有机化合物气相沉积(MOCVD)技术生长了双层InAs/GaAs量子点,并将GaInP作为应力补偿层引入到其中,采用原子力显微镜(AFM)对量子点的结构和生长质量进行了表征与分析.实验结果表明,应变补偿层的采用可有效改善第二层量子点质量:(1)面密度最高可达7.5×1010 cm-2,而没有应变补偿层的样品的面密度仅为5.8×1010 cm-2;(2)缺陷岛密度可从不采用应变补偿时的9.6×107 cm-2降低至2.8×107 cm-2;(3)量子点的均匀性和尺寸也明显改善.此外,不同应变补偿层厚度比较实验结果显示,厚度过高或过低的应变补偿层都不能起到很好的补偿作用,取1~3 nm之间为佳;不同GaInP补偿层组分的比较实验结果表明,Ga组分为0.566的样品补偿效果比0.606的样品更好.

参考文献

[1] Zhou D;Sharma G;Thomassen S F et al.Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitax[J].Applied Physics Letters,2010,96(06):913.
[2] Christopher G B;David V F;Ryne P R et al.Near 1 V open crcuit voltage InAs/GaAs quantum dot solar cells[J].Applied Physics Letters,2011,98(16):105.
[3] Sugaya, T.;Kamikawa, Y.;Furue, S.;Amano, T.;Mori, M.;Niki, S. .Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2011(1):163-166.
[4] Tutu F K;Sellers I R;Peinado M G et al.Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer[J].Journal of Applied Physics,2011,111(04):101.
[5] 赵寅生,向卫东,钟家松,蔡文,杨海龙,王京,董永军.纳米量子点材料在LED中的研究进展[J].材料导报,2011(03):28-31.
[6] Takata A;Akahane K;Yamamoto N et al.Optical gain of multi-stacked InAs quantum dots grown on InP(311) B substrate by strain-compensation-technique[J].Physica Status Solidi,2011,8(02):254.
[7] Tatebayashi, J;Nuntawong, N;Wong, PS;Xin, YC;Lester, LF;Huffaker, DL .Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2009(7):073002:1-073002:12.
[8] 吴巨,王占国.InAs/GaAs量子点材料和激光器[J].微纳电子技术,2005(11):489-494.
[9] Kouichi Akahane;Naokatsu Yamamoto;Tetsuya Kawanishi .Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique[J].Physica status solidi, A. Applications and materials science ePSS,2011(2):425-428.
[10] Kouichi Akahane;Naokatsu Yamamoto .Wide-band emissions from highly stacked quantum dot structure grown using the strain-compensation technique[J].Journal of Crystal Growth,2011(1):154-157.
[11] Okumura S;Yasuoka N;Kawaguchi K et al.Study of multiple-stacking growth of 1.55 μm InAs columnar quantum dots with modulated tensile-strained InGaAsP barrier layers[J].Journal of Crystal Growth,2012,340(01):87.
[12] Morioka, T.;Okada, Y. .Dark current characteristics of InAs/GaNAs strain-compensated quantum dot solar cells[J].Physica, E. Low-dimensional systems & nanostructures,2011(2):390-393.
[13] Oshima R;Okada Y T;Takata A et al.High-density quantum dot superlattice for application to high-efficiency solar cells[J].Physica Status Solidi,2011,8(02):619.
[14] Oshima R;Hashimoto T;Shigekawa H;Okada Y .Multiple stacking of self-assembled InAs quantum dots embedded by GaNAs strain compensating layers[J].Journal of Applied Physics,2006(8):83110-1-83110-4-0.
[15] Oshima, R.;Takata, A.;Shoji, Y.;Akahane, K.;Okada, Y. .InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell[J].Physica, E. Low-dimensional systems & nanostructures,2010(10):2757-2760.
[16] Yoshitaka Okada;Ryuji Oshima;Ayami Takata .Characteristics of InAs/GaNAs strain-compensated quantum dot solar cell[J].Journal of Applied Physics,2009(2):024306-1-024306-3.
[17] Ayami Takata;Ryuji Oshima;Yasushi Shoji;Kouichi Akahane;Yoshitaka Okada .Evaluation of multi-stacked InAs/GaNAs self-assembled quantum dots on GaAs (001) grown using different As species[J].Journal of Crystal Growth,2011(1):158-160.
[18] R. B. Laghumavarapu;M. El-Emawy;N. Nuntawong;A. Moscho;L. F. Lester;D. L. Huffaker .Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers[J].Applied physics letters,2007(24):243115-1-243115-3-0.
[19] Nuntawong N;Birudavolu S;Hains CP;Huang S;Xu H;Huffaker DL .Effect of strain-compensation in stacked 1.3 mu m InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition[J].Applied physics letters,2004(15):3050-3052.
[20] Lin YY.;Singh J. .Self-assembled quantum dots: A study of strain energy and intersubband transitions[J].Journal of Applied Physics,2002(10):6205-6210.
[21] Akahane K;Yamamoto N;Naruse M et al.Energy transfer in multi-stacked InAs quantum dots[J].Japanese Journal of Applied Physics,2011,50(04):04DH05-04DH01.
[22] Yu-Li Tsai;Ray-Hua Horng;Ming-Chun Tseng;Chia-hao Kuo;Po-Liang Liu;Dong-Sing Wuu;Der-Yuh Lin .Phase separation phenomenon in MOCVD-grown GaInP epitaxial layers[J].Journal of Crystal Growth,2009(11):3220-3224.
[23] M. Schmidbauer;A. Ugur;C. Wollstein;F. Hatami;F. Katmis;O. Caha;W. T. Masselink .Nucleation of lateral compositional modulation in InGaP epitaxial films grown on (001) GaAs[J].Journal of Applied Physics,2012(2):024306-1-024306-5.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%