欢迎登录材料期刊网

材料期刊网

高级检索

利用硅改性树脂中硅元素和碳元素分子级均匀分散的特征,以硅改性树脂为涂层原料,在泡沫碳化硅陶瓷表面原位生成了多孔碳化硅活性涂层。在加入适量活性炭颗粒的条件下,在泡沫碳化硅陶瓷表面得到了性能良好的纳米碳化硅涂层,适合作为催化剂载体。相反,在没有活性炭颗粒加入的情况下,所得涂层龟裂、结合强度低,且碳化硅团聚成片,比表面积小。

Nanoporous silicon carbide (SIC) coating was successfully fabricated on foam-shaped SiC ceramics by using silicon-modified phenolic resin as the coating material. The molecular level mixed silicon and carbon elements in the coating material led to in situ formation of nanoscale SiC particles and pores during the subsequent carbothermal reduction reaction. Adding an appropriate amount of activated carbon into the modified resin was beneficial for fabrication of high quality nanoporous SiC coating on foam SiC suitable for catalyst support use. By contrast, without adding activated carbon, deflects such as weak adhesion, particle aggregation and cracks were observed in the coating. Meanwhile, the specific surface area of the fabricated composite was low.

参考文献

[1] Meille V .Review on methods to deposit catalysts on structured surfaces[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2006(0):1-17.
[2] X. BAO;M. R. NANGREJO;M. J. EDIRISINGHE .Preparation of silicon carbide foams using polymeric precursor solutions[J].Journal of Materials Science,2000(17):4365-4372.
[3] Okada K;Kato H;Nakajima K .Preparation of silicon carbide fiber from activated carbon fiber and gaseous sili- con monoxide[J].Journal of the American Ceramic Soci- ety,1994,77(06):1691-1693.
[4] Vannice M A;Chao Y L;Friedman R M .The prepara- tion and use of high surface area silicon carbide catalyst supports[J].AppliedCatalysis,1986,20(01):91-107.
[5] Xie Maolin;Luo Deli;Xian Xiaobin .Twain face anvils sinter SiC at low temperature and ultrahigh-pressure[J].Journal of Functional Materials,2007,38:3790-3792.
[6] Jean-Mario Nhut;Ricardo Vieira;Laurie Pesant;Jean-Philippe Tessonnier;Nicolas Keller;Gaby Ehret;Cuong Pham-Huu;Marc J. Ledoux .Synthesis and catalytic uses of carbon and silicon carbide nanostructures[J].Catalysis Today,2002(1):11-32.
[7] Moene R;Makkee M;Moulijn J A .High surface areasilicon carbide as catalyst support characterization and stability[J].Applied Catalysis A:General,1998,167(02):321-330.
[8] R. Moene;E. P. A. M. Tijsen;M. Makkee;J. A. Moulijn .Synthesis and thermal stability of Ni, Cu, Co, and Mo catalysts based on high surface area silicon carbide[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,1999(1):127-141.
[9] 郑勇,郑瑛,林良旭,魏可镁.新型双孔碳化硅的合成与表征[J].功能材料,2006(12):1948-1950.
[10] 孙莹,谭寿洪,江东亮.多孔碳化硅材料的制备及其催化性能[J].无机材料学报,2003(04):830-836.
[11] Ledoux M J;Hantzer S;Cuong P H et al.New synthe- sis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal re- sistance[J].Journal of Catalysis,1988,114(01):176-185.
[12] Nicolas Keller;Olivier Reiff;Valerie Keller;Marc J.Ledoux .High surface area submicrometer-sized beta-SiC particles grown by shape memory synthesis method[J].Diamond and Related Materials,2005(8):1353-1360.
[13] Pham-Huu C;Keller N;Ehret G et al.The first prepa- ration of silicon carbide nanotubes by shape memory synthesis and their catalytic potential[J].Journal of Ca- talysis,2001,200(02):400-410.
[14] Keller N;Pham-Huu C;Crouzet C et al.Direct oxida- tion of H2 S into S new catalysts and processes based on SiC support[J].Catalysis Today,1999,53(04):535-542.
[15] Parmentier J;Patarin J;Dentzer J et al.Formation of SiC via carbothermal reduction of a carbon containing mesoporous MCM-48 silica phase:a new route to pro- duce high surface area SiC[J].Ceramics International,2002,28(01):1-7.
[16] Moene R;Kramer L F;Schoonman J et al.Synthesis of high surface area silicon carbide by fluidized bed chemical vapour deposition[J].Applied Catalysis A:General,1997,162(1-2):181-191.
[17] 张劲松;曹小明;马立新 等.一种高强度碳化硅泡沫陶瓷及其制备方法[P].中国专利:CNl325832,2001-12-12.
[18] 王富强,郝志彪,闫联生.碳化硅纳米晶须的制备研究[J].材料导报,2008(Z2):74-76,86.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%