以热膨胀还原所制石墨烯为载体,采用超声辅助ˉ化学镀法制得石墨烯担载Ni纳米复合材料。利用X射线衍射仪和透射电子显微镜和能谱仪分析其微观结构及元素组成,研究其化学镀镍的反应机理。结果表明,随施镀时间的延长,Ni纳米颗粒以Pd为自催化活性中心,逐步附着在石墨烯表面上,并随Pd纳米颗粒的分布情况而富集在石墨烯边缘及皱褶区域;Sn纳米颗粒对化学镀镍贡献较小,以致化学镀镍后仍有部分残留。可见,在石墨烯表面进行化学镀镍时,Pd对Ni纳米颗粒的生长成核起定位和催化作用。
Thermally reduced graphene oxide was pretreated consecutively in solutions of SnCl2 in HCl and PdCl2 in HCl. The reˉ sulting material was then plated with nickel nanoparticles under sonication to prepare Ni/graphene nanocomposites. XRD, TEM and EDS were used to investigate the microstructure, elemental composition and the chemical plating mechanism. Results show that Sn nanoparticles are distributed evenly on the reduced graphene oxide. Pd nanoparticles are located preferentially at the edges of graˉ phene sheets and at wrinkles in them, and are also found on some Sn nanoparticles. Ni nanoparticles are formed on the Pd nanopartiˉ cles and act as active centers for Ni growththat results in covering most of the graphene sheet after plating.
参考文献
[1] | Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666-669. |
[2] | Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191. |
[3] | Li X;Wang X;Zhang L;Lee S;Dai H .Chemically derived, ultrasmooth graphene nanoribbon semiconductors.[J].Science,2008(5867):1229-1232. |
[4] | Stankovich S;Dikin DA;Dommett GHB;Kohlhaas KM;Zimney EJ;Stach EA;Piner RD;Nguyen ST;Ruoff RS .Graphene-based composite materials[J].Nature,2006(7100):282-286. |
[5] | Huang, X.;Yin, Z.;Wu, S.;Qi, X.;He, Q.;Zhang, Q.;Yan, Q.;Boey, F.;Zhang, H. .Graphene-based materials: Synthesis, characterization, properties, and applications[J].Small,2011(14):1876-1902. |
[6] | 张丽芳,魏伟,吕伟,邵姣婧,杜鸿达,杨全红.石墨烯基宏观体:制备、性质及潜在应用[J].新型炭材料,2013(03):161-171. |
[7] | PATRICE SIMON;YURY GOGOTSI .Materials for electrochemical capacitors[J].Nature materials,2008(11):845-854. |
[8] | Liang, S.;Zhu, X.;Lian, P.;Yang, W.;Wang, H. .Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries[J].Journal of Solid State Chemistry,2011(6):1400-1404. |
[9] | Chen, S.;Chen, P.;Wu, M.;Pan, D.;Wang, Y. .Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries[J].Electrochemistry communications,2010(10):1302-1306. |
[10] | Song H G;Zhang L C;He C L.Graphene sheets decoraˉ ted with SnO2 nanoparticles:in situ synthesis and highly effiˉ cient materials for cataluminescence gas sensors[J].Journal of Materials Chemistry,2011:21,5972-5977. |
[11] | M. Marcinek;L.J. Hardwick;T.J. Richardson;X. Song;R. Kostecki .Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries[J].Journal of Power Sources,2007(2):965-971. |
[12] | Wang G X;Wang B;Wang X L.Sn/graphene nanocomˉ posite with 3D architecture for enhanced reversible lithium storˉ age in lithium ion batteries[J].Journal of Materials Chemistry,2009:19. |
[13] | Caturla F;Molima F;MolimaˉSabio M et al.Electroless platˉ ing of graphite with copper and nickel[J].Journal of the Electrochemical Society,1995,142(12):4084. |
[14] | Ebbesen T W;Hiura H;Margare E et al.Carbon nanotubes decoration[J].Advanced Materials,1996,8:155. |
[15] | 方建军,李素芳,查文珂,从洪云,陈俊芳,陈宗璋.镀镍石墨烯的微波吸收性能[J].无机材料学报,2011(05):467-471. |
[16] | Lv, W.;Tang, D.-M.;He, Y.-B.;You, C.-H.;Shi, Z.-Q.;Chen, X.-C.;Chen, C.-M.;Hou, P.-X.;Liu, C.;Yang, Q.-H. .Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage[J].ACS nano,2009(11):3730-3736. |
[17] | Li Q Q;Fan S S;Han W Q et al.Coating of carbon nanotube with nickel by electroless plating method[J].Journal of Applied Physics,1997,36(4B):501-503. |
[18] | Li M A;Andy T S H;Wang J L S et al.Electroless plating of metals onto carbon nanobubes activated by a singleˉstep activaˉ tion method[J].CHEMISTRY OF MATERIALS,1999,11(08):2115-2118. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%