欢迎登录材料期刊网

材料期刊网

高级检索

以天然海泥(BMFC-o)、添加尿素的海泥(BMFC-1)和添加乳酸的海泥(BMFC-2)构建海底沉积物微生物燃料电池(BMFCs),研究外源添加营养物质对BMFCs电池性能及电极电化学性能的影响.结果表明,尿素和乳酸这两种营养物质明显影响海泥中微生物的数量和电化学性能;计数结果表明,BMFC-2中的细菌数量最多,约为1.08×1011 cfu/m2,分别是BMFC-1和BMFC-0的2.97倍和13.5倍.Tafel测试结果表明,BMFC-2阳极生物膜电化学活性高于BMFC-1和BMFC-0;BMFC-1和BMFC-2的阳极电子交换动力学活性分别是BMFC-0的1.30倍和1.63倍.通路状态下,BMFC-2的输出电压最大(约520 mV),BMFC-0的输出电压最低(约175 mV);BM-FC-2的最大输出功率密度为96.57 mW·m-2,分别是BMFC-0(10.94 mW·m-2)和BMFC-1 (51.57 mW·m-2)的8.83倍和1.87倍.根据外源营养物质对阳极表面生物膜电容特性影响的分析,提出了外源营养物提高电池性能的模型,阴极表面细菌数量增多,代谢产生的电子数量增加,生物膜增厚,生物模电容和双电层电容增大.

参考文献

[1] Lovley DR.Bug juice: harvesting electricity with microorganisms[J].Nature reviews. Microbiology,20067(7):497-508.
[2] Derek Lovley.Taming Electricigens[J].The Scientist,20067(7):46-0.
[3] Li, Chao;Ren, Hongqiang;Xu, Ming;Cao, Jiashun.Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2015:545-552.
[4] Feng Zhao;Robert C. T. Slade;John R. Varcoe.Techniques for the study and development of microbial fuel cells: an electrochemical perspective[J].Chemical Society Reviews,20097(7):1926-1939.
[5] 刘敏;邵军;周奔;周顺;倪晋仁.微生物产电呼吸最新研究进展[J].应用与环境生物学报,2010(3):445-452.
[6] 卢志凯 .低电位阳极海底微生物燃料电池构建及温度对电池性能影响[D].中国海洋大学,2013.
[7] 张丽彬;李超;丁丽丽;任洪强.温度、pH对微生物燃料电池产电的影响研究[J].环境污染与防治,2010(4):62-66.
[8] 叶晔捷;宋天顺;徐源;陈英文;祝社民;沈树宝.微生物燃料电池产电的影响因素[J].过程工程学报,2009(3):526-530.
[9] 王敏 .底物对微生物燃料电池产电性能及微生物群落结构的影响研究[D].中国海洋大学,2014.
[10] 英明;柳昭慧;赵阳国;付玉彬.外源添加物对海底沉积物微生物燃料电池性能的影响[J].海洋与湖沼,2015(3):489-496.
[11] S. Venkata Mohan;G. Mohanakrishna;B. Purushotham Reddy.Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J].Biochemical Engineering Journal,20081(1):121-130.
[12] Jung S;Regan JM.Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors[J].Applied Microbiology and Biotechnology,20072(2):393-402.
[13] 胡文娟 .含氮杂环化合物对微生物燃料电池性能影响的研究[D].湖南大学,2010.
[14] 刘晶晶;孙永明;孔晓英;李连华;李颖;田沈;杨秀山;袁振宏.微生物燃料电池中底物的研究进展[J].环境科学与技术,2011(6):104-108,114.
[15] Lijiao Ren;Yongtae Ahn;Huijie Hou;Fang Zhang;Bruce E. Logan.Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions[J].Journal of Power Sources,2014Jul.1(Jul.1):454-460.
[16] MA Fernandez de Dios;O. Iglesias;E. Bocos.Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation[J].Journal of industrial and engineering chemistry,20145(5):3754-3760.
[17] MARK E. NIELSEN;DI M. WU;PETER R. GIRGUIS.Influence of Substrate on Electron Transfer Mechanisms in Chambered Benthic Microbial Fuel Cells[J].Environmental Science & Technology: ES&T,200922(22):8671-8677.
[18] 王健;宰学荣;刘建敏;柴方刚;庄晓培;付玉彬.海底微生物燃料电池聚吡咯/多壁碳纳米管复合改性阳极及电化学性能[J].材料开发与应用,2015(3):61-67.
[19] XIN WANG;SHAOAN CHENG;YUJIE FENG.Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells[J].Environmental Science & Technology: ES&T,200917(17):6870-6874.
[20] 郑文锐;傅尧;刘磊;郭庆祥.尿素及硫脲与羰基化合物间的氢键相互作用[J].物理化学学报,2007(7):1018-1024.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%