欢迎登录材料期刊网

材料期刊网

高级检索

采用大气等离子喷涂系统,制备了常规和超细Al2O3-3wt%TiO2涂层.利用 X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对涂层相组成和显微结构进行了表征.测量了涂层直流电阻,介电常数和介电损耗.在等离子喷涂过程中,α-Al2O3氧化铝大部分转变为γ-Al2O3.氧化钛在常规涂层中主要以非计量的Ti2O3形式存在;对于超细涂层,氧化钛与氧化铝反应形成固溶体.常规Al2O3-3wt%TiO2涂层呈现典型的板条层结构,而超细Al2O3-3wt%TiO2涂层除了具有板条层外,还含有大量的等轴α-Al2O3晶粒,其尺寸在150~800nm之间,在常规涂层中,组成板条层的柱状γ-Al2O3晶粒直径约为700nm;而对于超细涂层,其绝大部分<200nm.与常规Al2O3-3wt%TiO2涂层相比,超细Al2O3-3wt%TiO2涂层具有较高的直流电阻;但在相同频率下,超细涂层介电常数和介电损耗都较常规涂层小.

Conventional and nanostructured Al2O3-3wt%TiO2 coatings were deposited by plasma spraying with conventional and nanostructured powders, respectively. The phase compositions and microstructure of the as-spraying coatings were characterized by XRD,
SEM and TEM. The electrical resistivity, dielectric constant and dielectric loss of coatings were measured. In both conventional and nanostructured
Al2O3-3wt%TiO2 coatings, alumina mainly existed in the form of γ-Al2O3 with some α-Al2O3. Non-stoichiometric Ti2O3 was found in the conventional coating; while in the
nanostructured coating, titania reacted with alumina to form solid solution. The conventional Al2O3-3wt%TiO2 coating exhibited a typical splat
microstructure. For the nanostructured Al2O3-3wt%TiO2 coating, many equiaxed α-Al2O3 grains besides splat lamellae were also observed.
The size of equiaxed α-Al2O3 grains was about 150~800nm. Compared to the conventional Al2O3-3wt%TiO2 coating, electrical
resistivity of the nanostructured Al2O3-3wt%TiO2 coating increased. But the nanostructured coating exhibited lower dielectric constant and
dielectric loss.

参考文献

[1] Lau M L, Jiang H G, Lavernia E J. J. Therm. Spray Technol., 1998, 7: 436.
[2] Tellkamp V, Lau M L, Fabel A, Lavernia E J. Nanostruct. Mater., 1997, 9: 489--492.
[3] Zhu Y, Yukimura K, Ding C, Zhang P. Thin Solid Films, 2001, 388: 277--282.
[4] He J, Schoenung J M. Surf. Coat. Technol., 2002, 157: 72--79.
[5] 陈煌, 丁传贤(CHENG Huang, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (4): 882--886.
[6] 祝迎春. 中国科学院上海硅酸盐研究所博士学位论文, 1999.
[7] 程旭东, 邓世均, 李志宏. 材料保护, 1999, 32 (4): 31--34.
[8] Niemi K, Vuoristo P, M\ddot{ antyl\ddot{ a T. J. Therm. Spray. Technol., 1994, 3: 199--203.
[9] Kim H-J, Lee C-H, Kweon Y-G. Surf. Coat. Technol., 2001, 139: 75--80.
[10] Ramachandran K, Selvarajan V, Ananthapadmanabhan P V, et al. Thin Solid Films, 1998, 315: 144--152.
[11] Lin X, Zeng Y, et al. J. Eur. Ceram. Soc., 2003, 24 (4): 627--634.
[12] Chráska P, Dubsky J, et al. J. Therm. Spray. Technol., 1992, 1: 301--306.
[13] McPherson, R. J. Mater. Sci., 1980, 15: 3141--3149.
[14] Kear, B H, Kalman, Z, et al. J. Therm. Spray Technol., 2000, 9: 483--487.
[15] Goberman, D, Sohn, et al. Acta. Mater., 2002, 50: 1141--1152.
[16] W. D. 金格瑞, 等著, 清华无机金属材料教研组译. 陶瓷导论, 1982. 911.
[17] 赵登涛, 狄国庆, 朱炎. 材料科学与工程, 2000, 18 (3): 80--83.
[18] 恽正中, 等. 半导体及薄膜物理. 北京: 国防工业出版社, 1981. 253.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%