材料保护, 2010, 43(5): 61-63.
大连饱和水土壤中Q235B钢和L245钢的腐蚀行为
袁赓 1, , 王树刚 2, , 章阳 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"冷喷涂304不锈钢层耐腐蚀性能优良,而喷涂气体温度对涂层组织结构与性能影响较大。采用不同温度的喷涂气体,在低碳钢表面冷喷涂304不锈钢层,探讨了喷涂气体温度对涂层相结构、致密度、厚度、硬度、内聚结合力以及沉积率的影响。结果表明:提高喷涂气体温度对304不锈钢涂层的物相无影响,不会使涂层明显氧化;随喷涂气体温度升高,喷涂粒子的碰撞速度与塑性变形能力增大,粒子沉积的临界速度变小,涂层致密度、硬度、内聚结合力以及沉积率变大。","authors":[{"authorName":"孟宪明","id":"a49263e7-d7fc-4b04-81c1-88e405602978","originalAuthorName":"孟宪明"},{"authorName":"梁永立","id":"81ac3bbd-4955-4e75-b4f2-67ca26b02884","originalAuthorName":"梁永立"},{"authorName":"韩伟","id":"59368c3e-fc0f-49b3-b50c-ec7fe11dde21","originalAuthorName":"韩伟"},{"authorName":"赵杰","id":"49f1a57a-4fbd-4492-8283-11d3c66a1d02","originalAuthorName":"赵杰"},{"authorName":"张俊宝","id":"ee74c246-3a9f-4c11-8f7f-f318fa9505b7","originalAuthorName":"张俊宝"}],"doi":"","fpage":"1","id":"0f34b791-6350-4331-950b-f75716d1f579","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"3432da1f-9259-4f22-b9c2-7518589c2b54","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"c82392d2-8a0a-4755-a148-0fa7df0da53e","keyword":"304不锈钢涂层","originalKeyword":"304不锈钢涂层"},{"id":"5d9550c5-f214-4a13-93da-6a5a662b8e05","keyword":"喷涂气体温度","originalKeyword":"喷涂气体温度"},{"id":"304b184a-8ece-455a-9ba8-9a1172c5779c","keyword":"致密度","originalKeyword":"致密度"},{"id":"cd8c693a-c4e9-46e8-bca0-1d2f70b6c39f","keyword":"硬度","originalKeyword":"硬度"},{"id":"3438f999-0112-4c5f-a427-7d2c90199998","keyword":"内聚结合力","originalKeyword":"内聚结合力"},{"id":"878709a4-c69c-40eb-82de-a8c90fc038f1","keyword":"沉积率","originalKeyword":"沉积率"}],"language":"zh","publisherId":"clbh201107002","title":"喷涂气体温度对冷喷涂304不锈钢层组织结构与性能的影响","volume":"44","year":"2011"},{"abstractinfo":"鉴于目前冷喷涂新技术受到国内外越来越多学者的关注,简述了冷喷涂技术的潜在应用类型及应用领域,包括保护涂层、功能涂层、喷涂成型、零件修复等方面,重点探讨了目前冷喷涂研究领域两个重要研究方向--冷喷涂粒子结合机理和冷喷涂制备金属基复合材料的研究情况,并结合实际研究经验和当前的研究报道指出了其存在的问题.","authors":[{"authorName":"李文亚","id":"b63263cd-aefb-4073-8ec3-8556eed966b0","originalAuthorName":"李文亚"},{"authorName":"余敏","id":"d9f8e198-22f6-483e-8b7e-948e361b1da1","originalAuthorName":"余敏"}],"doi":"10.3969/j.issn.1001-3660.2010.05.027","fpage":"95","id":"a79bf467-1a99-4da8-94f0-1a7af0b8785e","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"988bcc50-0e19-45d1-b7de-d7bdd4ac93b0","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"7b5e9306-a69b-4310-ba3a-a89c99bc8259","keyword":"应用","originalKeyword":"应用"},{"id":"239f23cc-5f11-4c45-bca9-7451496afcda","keyword":"粒子结合机理","originalKeyword":"粒子结合机理"},{"id":"8c6cbe9c-6762-4c97-b9d7-8c38a938eeb7","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"bmjs201005027","title":"冷喷涂技术的最新研究现状","volume":"39","year":"2010"},{"abstractinfo":"综述了冷喷涂过程中粒子速度和临界速度的模拟计算及实际测定的方法,分析了冷喷涂中影响临界速度的因素,指出合理利用数值计算方法并结合粒子和基体本身的物理性质来设计喷管几何结构、优化涂层制备工艺参数以提高涂层性能将是冷喷涂发展的主要方向之一.","authors":[{"authorName":"卜恒勇","id":"72f6f286-2eff-40e2-9034-2ceb5a2dbdfc","originalAuthorName":"卜恒勇"},{"authorName":"卢晨","id":"da37c91c-8077-4218-9672-0d407204dbc9","originalAuthorName":"卢晨"}],"doi":"","fpage":"46","id":"c4fde31b-c2b6-46d7-8263-58b8a522a5dd","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"3b522da2-0ae0-4f47-9e52-492b60e040ab","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"89df5a6b-281a-404a-ad99-fd4122170f0e","keyword":"临界速度","originalKeyword":"临界速度"},{"id":"c87e291e-d775-40ae-b343-b86f8b92aa6b","keyword":"粒子速度","originalKeyword":"粒子速度"},{"id":"7a2bbb37-1da9-4051-8c36-0bc93722281c","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"clbh201104015","title":"冷喷涂临界速度及其影响因素","volume":"44","year":"2011"},{"abstractinfo":"针对海洋环境中各类钢铁构件日益严重的腐蚀现状,鉴于传统热喷涂技术无法解决涂层孔隙率高、热应力大等缺陷,冷喷涂技术制备防腐涂层受到国内外越来越多学者的关注.在分析大量文献的基础上,对冷喷涂制备防腐涂层的研究现状进行了分类和总结.首先,对比传统热喷涂技术特点,指出冷喷涂技术制备金属涂层、复合涂层以及非金属防腐涂层的优势和可行性,同时从电化学腐蚀角度揭示金属涂层和复合涂层的防腐机理,并简述了前人对非金属涂层防腐机理的各种合理分析.其次,从涂层孔隙率、电化学性质(包括自腐蚀电位、腐蚀电流等)以及特定应用环境下的腐蚀试验等防腐性能表征入手,归纳了冷喷涂制备的金属涂层、非金属涂层以及复合涂层等研究成果,并发现冷喷涂制备防腐涂层技术正在逐渐走向成熟,相对于金属和复合涂层,非金属涂层正在从实验室研发阶段向工业应用过渡.最后,分析了冷喷涂制备防腐涂层当前存在的主要问题和应用前景.","authors":[{"authorName":"卢静","id":"534a0016-c55c-4e87-88d2-aeed65d4b43e","originalAuthorName":"卢静"},{"authorName":"王光华","id":"b9c8a587-0c20-45e1-a5b7-03a832717043","originalAuthorName":"王光华"},{"authorName":"黄乐之","id":"bad9000e-2895-4f74-baf1-cdb7e506864a","originalAuthorName":"黄乐之"},{"authorName":"刘东华","id":"9ac358f8-6361-4b5b-9315-94b9b7a6b70f","originalAuthorName":"刘东华"},{"authorName":"闵小兵","id":"e314a811-403c-40db-84d3-61a982ef26f5","originalAuthorName":"闵小兵"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.09.014","fpage":"88","id":"9ef27c3f-843d-4a72-b235-20e01568f806","issue":"9","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"e73c06f7-0a9a-4ede-8972-b8c3b999fcd1","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"16194392-456c-489f-b74b-62eec68285be","keyword":"防腐涂层","originalKeyword":"防腐涂层"},{"id":"57241a8d-4a39-410a-abec-a33967b75976","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"c2d7c7fb-095a-4c61-8e5e-e3decc0c88ea","keyword":"腐蚀电位","originalKeyword":"腐蚀电位"},{"id":"f7d8bb2d-8cf9-4460-8a9e-5f9b0352776f","keyword":"腐蚀电流密度","originalKeyword":"腐蚀电流密度"}],"language":"zh","publisherId":"bmjs201609014","title":"冷喷涂制备防腐涂层研究现状","volume":"45","year":"2016"},{"abstractinfo":"冷喷涂是近几年基于空气动力学发展起来的新型表面改性技术。冷喷涂技术在较低的温度下进行,相比热喷涂有很多优势,成为研制开发非晶、纳米及其他温度敏感材料的有效手段,在工业及国防领域有着重要的应用前景和价值。简要介绍了冷喷涂技术的原理、特点以及在保护涂层、功能涂层、近净成形、零件修复等方面的应用。涂层沉积机理的研究对冷喷涂技术的研究具有重要的理论意义,对工艺参数的优化以及优质涂层的制备具有重要的指导作用。冷喷涂装备对涂层质量和喷涂效率的提高至关重要。冷喷涂装备使冷喷涂技术的研究从理论研究到实验研究过渡,最终由实验室研究向工业应用过渡。详细阐述了冷喷涂涂层沉积机理及其研究进展。系统阐述了冷喷涂装备(真空冷喷涂、激光辅助冷喷涂、脉冲气体冷喷涂、激波风洞冷喷涂等)的工作原理及研究现状。","authors":[{"authorName":"钟厉","id":"51bb11c5-b191-44a8-ad32-fff584265416","originalAuthorName":"钟厉"},{"authorName":"王昭银","id":"289b731e-670e-45e4-a4e8-39f318bf99f5","originalAuthorName":"王昭银"},{"authorName":"张华东","id":"6f6c1fbd-06c7-451e-bd9d-32bed630f44e","originalAuthorName":"张华东"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.04.003","fpage":"15","id":"5019a7ea-618b-4622-a881-6504901624fa","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"a8e867c6-7d82-4983-bf38-673d806f52c2","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"473d9e1e-7408-4a15-a07b-b80547189af9","keyword":"沉积机理","originalKeyword":"沉积机理"},{"id":"24211a95-8e09-4fe4-b275-fd28863135a5","keyword":"装备","originalKeyword":"装备"},{"id":"067c6b85-d1b2-441d-9b81-2ff623ab8e95","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"bmjs201504003","title":"冷喷涂沉积机理及其装备的研究进展","volume":"","year":"2015"},{"abstractinfo":"超低碳钢(IF钢)具有极优异的深冲性能,但耐磨性和衬蚀性差,限制了其在汽车工业中的广泛应用.采用冷喷涂(CGDS)技术在IF钢基体上制备了耐磨性和耐蚀性好的304不锈钢涂层.利用X射线衍射仪和扫描电镜对涂层组织及相结构进行了分析,并在3.5%(质量浓度)NaCl溶液中进行了电化学腐蚀性能测试.结果表明:冷喷涂304不铸钢涂层由大量的变形粒子搭接构成,涂层中无氧化、相变,喷涂粒子激烈塑性变形导致的晶格畸变现象显著,晶粒细化;耐独性、耐磨性均好于基体,可以有效地改善基体的耐蚀性和耐磨性.","authors":[{"authorName":"韩玮","id":"56bc20a8-124b-4d70-a9b0-d7dabd5f2e15","originalAuthorName":"韩玮"},{"authorName":"孟宪明","id":"9f42c6b8-6ae0-4b70-b098-fedc3eeac129","originalAuthorName":"孟宪明"},{"authorName":"赵杰","id":"578b9e29-2467-4342-a42a-d73c1182e188","originalAuthorName":"赵杰"},{"authorName":"张俊宝","id":"12a9cd56-5c0b-44e0-9304-cb8bc2246ee0","originalAuthorName":"张俊宝"}],"doi":"","fpage":"77","id":"dad243d0-4d30-4960-a531-bd9b0e8ab6e9","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"5d8e5ec8-5c3c-4e5a-aa34-55551b935426","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"4181e220-9445-4c9d-bfc8-a54dc6be88dd","keyword":"304不锈钢涂层","originalKeyword":"304不锈钢涂层"},{"id":"3e9ccc68-41af-45c1-9137-3dabc957b8b2","keyword":"耐磨性","originalKeyword":"耐磨性"},{"id":"7c2a6c67-0081-41f4-9f35-1d560c64ea8e","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"41df5bbd-d75a-495b-a49b-fb2e7416d118","keyword":"超低碳钢","originalKeyword":"超低碳钢"},{"id":"3a903114-5d93-4fc8-96a2-ddce66ab4f80","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"537e6789-cbb7-4d54-b540-43dce4074c06","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"}],"language":"zh","publisherId":"clbh201103025","title":"冷喷涂304不锈钢涂层的组织与耐磨耐蚀性能","volume":"44","year":"2011"},{"abstractinfo":"冷喷涂是基于空气动力学原理的一种新型喷涂技术.它是利用低温(一般低于600℃)超音速气体射流加速喷涂粒子,使粒子不熔化,以固态形式与基体发生塑性碰撞而实现涂层沉积.相比于热喷涂技术,冷喷涂可以避免材料在喷涂过程中发生过热、氧化、晶粒长大等现象,适用于非晶、纳米晶涂层的制备.介绍了冷喷涂技术的原理、特点、沉积机制和工艺参数,总结了冷喷涂纳米涂层的研究进展.","authors":[{"authorName":"苏贤涌","id":"3952a6b3-4747-411c-9dbd-6cb7c81ca450","originalAuthorName":"苏贤涌"},{"authorName":"周香林","id":"37ccaf9c-4605-4dee-ad4d-51cff47e02be","originalAuthorName":"周香林"},{"authorName":"崔华","id":"9175582b-8fa1-49bd-a226-e07a012bdd03","originalAuthorName":"崔华"},{"authorName":"张济山","id":"0918e392-f29d-4b20-98ce-0fed3989360d","originalAuthorName":"张济山"}],"doi":"10.3969/j.issn.1001-3660.2007.05.024","fpage":"71","id":"46e0a12f-3f7f-4ec9-8180-2f4fc9145edc","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3d9390fc-9568-456a-8606-ca95f631413b","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"3c6e74c1-2d76-4571-8783-d3bd42e378c0","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"9ceb957b-4063-4eb4-9e4b-51e932874995","keyword":"纳米涂层","originalKeyword":"纳米涂层"}],"language":"zh","publisherId":"bmjs200705024","title":"冷喷涂技术的研究进展","volume":"36","year":"2007"},{"abstractinfo":"综述了冷喷涂技术的原理和特点,重点讨论了冷喷涂过程中粒子的临界速度和涂层质量的影响因素及涂层的沉积机制,并阐述了涂层的应用进展和发展趋势,指出合理地控制喷涂参数是获得性能优异涂层的重要条件,同时改进喷枪结构,制备功能涂层和复合涂层将是冷喷涂发展的主要方向.","authors":[{"authorName":"卜恒勇","id":"a2f9b6cc-bcab-4af4-bfb6-74bc842c14b2","originalAuthorName":"卜恒勇"},{"authorName":"卢晨","id":"1d17f947-e30b-4435-962e-444a75945403","originalAuthorName":"卢晨"}],"doi":"10.3969/j.issn.1001-4381.2010.01.021","fpage":"94","id":"d80dd11b-783a-4188-9710-59ea60dd7dab","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"eef8516e-145a-4490-9aac-f966e5225632","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"08c572f7-6e0b-4f44-bbbf-51c2f4cada02","keyword":"临界速度","originalKeyword":"临界速度"},{"id":"c6c651e2-60fd-453e-9e56-88e41e6f83f8","keyword":"沉积机制","originalKeyword":"沉积机制"},{"id":"1e9ebe04-6420-49cf-b94a-032fa840aa28","keyword":"复合涂层","originalKeyword":"复合涂层"}],"language":"zh","publisherId":"clgc201001021","title":"冷喷涂技术的研究现状及进展","volume":"","year":"2010"},{"abstractinfo":"利用机械合金化球磨得到NiAl合金粉末,将其冷喷涂在镍基高温合金(IN738)基体上,之后在保护气氛Ar中经热扩散制备NiAl、NiAl+0.5%ZrC(原子分数,下同)与NiAl+0.07%ZrC三种金属间化合物涂层.为了研究ZrC掺杂NiAl涂层的抗氧化性能,对NiAl及NiAl+ZrC金属间化合物涂层进行了等温氧化试验.将试样在1050℃下分别氧化0.5h、1h、2h、4h、10 h、50 h、100 h和200 h,采用X射线衍射仪和扫描电子显微镜分析了高温氧化后涂层的组织结构.结果表明涂层的氧化动力学基本符合抛物线规律.氧化膜的成分主要是α-Al2O3,NiAl+0.07%ZrC涂层的抗氧化性能优于NiAl+0.5%ZrC涂层.","authors":[{"authorName":"谢瑞广","id":"3feae088-e66d-4d4e-8e03-84589c72736a","originalAuthorName":"谢瑞广"},{"authorName":"李长久","id":"8a61a0b8-7325-47f9-a014-80f71ebcad0c","originalAuthorName":"李长久"},{"authorName":"崔红","id":"0a1ed961-e724-41a4-a4d9-88f39b9836ad","originalAuthorName":"崔红"}],"doi":"10.11896/j.issn.1005-023X.2016.12.002","fpage":"6","id":"f986e586-098b-47a5-84d7-4230ab4a2cdd","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3711d975-7a71-44e7-b2fa-4c27f995e311","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"bc3bd38d-372c-4b14-aeea-96c5b2a7a535","keyword":"热扩散","originalKeyword":"热扩散"},{"id":"24170680-c7de-4db3-bc98-4441646ecc60","keyword":"镍铝涂层","originalKeyword":"镍铝涂层"},{"id":"6a7c7712-cbb7-499d-9a15-c08334f3cce4","keyword":"碳化锆掺杂","originalKeyword":"碳化锆掺杂"},{"id":"dfcd0bd7-fcfd-4899-899e-1ffdbabe0de3","keyword":"高温氧化","originalKeyword":"高温氧化"},{"id":"e14c63f2-b89c-4e3a-a78f-eb319e9e9d79","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"0ac1d23b-53c0-4c76-b1e4-3d094307f8eb","keyword":"热障涂层","originalKeyword":"热障涂层"}],"language":"zh","publisherId":"cldb201612002","title":"冷喷涂制备ZrC改性NiAl粘结层的高温氧化行为","volume":"30","year":"2016"},{"abstractinfo":"鉴于目前冷喷涂技术制备复合材料涂层受到国内外越来越多学者的关注,本文在大量文献分析的基础上对冷喷涂制备复合材料涂层进行了分类和总结.首先,探讨了喷涂前粉末准备和喷涂工艺参数对复合材料涂层的影响;其次,归纳了冷喷涂制备的金属-金属、金属-陶瓷、金属-金属间化合物以及纳米复合材料涂层等研究成果;最后,分析了冷喷涂制备复合材料涂层的应用前景和当前存在的主要问题.","authors":[{"authorName":"李文亚","id":"f72b96bc-2a8a-4015-a85d-9eb19e1617b5","originalAuthorName":"李文亚"},{"authorName":"黄春杰","id":"4137de16-ac42-4b7c-ac6f-955616f3b89e","originalAuthorName":"黄春杰"},{"authorName":"余敏","id":"5400c112-3065-4087-9ac0-86432a31d2d9","originalAuthorName":"余敏"},{"authorName":"廖汉林","id":"66ecf63d-e912-4be9-92cc-cdd91cd3680e","originalAuthorName":"廖汉林"}],"doi":"10.3969/j.issn.1001-4381.2013.08.001","fpage":"1","id":"10634a51-7141-4b8c-aa83-ffeea1a06976","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"7caa3487-6bf8-4423-852a-70c4120fab83","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"6654e58b-29fa-422f-a97d-0de5f327962e","keyword":"复合粉末","originalKeyword":"复合粉末"},{"id":"0c604a76-76bf-49db-aa1b-c9e841133d76","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"cb1ff4f9-b345-4265-99ea-1ce454430d95","keyword":"复合材料涂层","originalKeyword":"复合材料涂层"}],"language":"zh","publisherId":"clgc201308001","title":"冷喷涂制备复合材料涂层研究现状","volume":"","year":"2013"}],"totalpage":729,"totalrecord":7285}