欢迎登录材料期刊网

材料期刊网

高级检索

以甲烷为碳源,Fe2O3为催化剂,常压下利用配有扰流器件(石墨碗)的约束型热等离子射流高温裂解甲烷,通过原位催化制得两类碳纳米管.运用SEM、TEM、TGA等对不同取样位置产物进行形貌和结构的表征.结果表明:在不同取样部位可获得不同形貌结构的碳纳米管.过滤管外壁处产物为单壁管,石墨碗内产物为套杯状多壁管.气体流动状态影响碳纳米管的形貌,经历层流的前驱物成为高度结晶单壁管,而经历湍流的前驱物则演变成套杯状多壁管.石墨碗腔内的局部高温可使多壁管不断增粗,有利于制备高纯度的碳纳米管.

参考文献

[1] 戴贵平,刘敏,王茂章,成会明.纳米碳管电化学储氢的研究进展[J].新型炭材料,2002(03):70-74.
[2] 王敏炜,李凤仪,彭年才.碳纳米管--新型的催化剂载体[J].新型炭材料,2002(03):75-79.
[3] 李莉香,李峰,英哲,杨全红,成会明.纳米碳管/聚合物功能复合材料[J].新型炭材料,2003(01):69-74.
[4] Chen C F;Lin C L;Wang C M .Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor desposition[J].Applied Physics Letters,2003,82(15):2515-2517.
[5] E.Hammel;X.Tang;M.Trampert;T.Schmitt;K.Mauthner;A.Eder;P.Potschke .Carbon nanofibers for composite applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(5/6):1153-1158.
[6] James R. Fincke;Raymond P. Anderson;Timothy A. Hyde;Brent A. Detering .Plasma Pyrolysis of Methane to Hydrogen and Carbon Black[J].Industrial & Engineering Chemistry Research,2002(6):1425-1435.
[7] Chen YM.;Zhang HY.;Zhu YJ.;Yu D.;Tang ZF.;He YY.;Wu CY.;Wang JH. .A new method of fullerene production: pyrolysis of acetylene in high-frequency thermal plasma[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2002(1):29-32.
[8] Keun Su Kim;Sang Hee Hong;Kwang-Sik Lee;Won Tae Ju .Continuous Synthesis of Nanostructured Sheetlike Carbons by Thermal Plasma Decomposition of Methane[J].IEEE Transactions on Plasma Science,2007(2 Pt.3):434-443.
[9] Choi SI;Nam JS;Kim JI;Hwang TH;Seo JH;Hong SH .Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2006(0):244-249.
[10] 赵雪飞,邱介山,孙业新,郝策,孙天军,崔凌威.电弧放电法制备煤基炭纳米纤维及开口竹节状碳纳米管[J].新型炭材料,2009(02):109-113.
[11] 梁新宇,王浩静,刘颖,晁兵,周立公.等离子体射流辅助双催化剂原位催化法合成碳纳米管[J].新型炭材料,2005(03):250-254.
[12] Ohishi, T;Yoshihara, Y;Fukumasa, O .Continuous synthesis of carbon nanoclusters using well-controlled thermal plasmas[J].Surface & Coatings Technology,2008(22/23):5329-5332.
[13] Choi S I;Nam J S;Lee C M et al.High purity synthesis of carbon nanotubes by methane decomposition using an arc-jet plasma[J].Current Applied Physics,2006,6(02):224-229.
[14] Peter T.A. Reilly;William B. Whitten .The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(9):1653-1660.
[15] Joeoong Hahn;Soo Bong Heo;Jung Sang Suh .Catalyst free synthesis of high-purity carbon nanotubes by thermal plasma jet[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(12):2638-2641.
[16] Joeoong Hahn;Jong Hun Han;Jae-Eun Yoo .New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(4):877-883.
[17] Kim M S;Rodriguez N M;Baker R T K .The interp lay between sulfer adsorp tion and carbon deposition on coalt catalysts[J].Journal of Catalysis,1993,143(02):449-463.
[18] 张红瑞,郭新勇,丁佩,杜祖亮,梁二军.不同催化剂热解法制备硼碳氮纳米管过程中的影响[J].物理学报,2003(07):1808-1811.
[19] Milton R. Smith Jr;Sheila W. Hedges;Robert LaCount;Douglas Kern;Naresh Shah;Gerald P. Huffman;Bradley Bockrath .Selective oxidation of single-walled carbon nanotubes using carbon dioxide[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(6):1221-1230.
[20] Guixiang Du;Shouai Feng;Jianghong Zhao .Particle-Wire-Tube Mechanism for Carbon Nanotube Evolution[J].Journal of the American Chemical Society,2006(48):15405-15414.
[21] Mina Yoon;Seungwu Han;Gunn Kim;Sang Bong Lee;Savas Berber;Eiji Osawa;Jisoon Ihm;Mauricio Terrones;Florian Banhart;Jean-Christophe Charlier;Nicole Grobert;Humberto Terrones;Pulickel M. Ajayan;David Tomanek .Zipper Mechanism of Nanotube Fusion: Theory and Experiment[J].Physical review letters,2004(7):075504.1-075504.4.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%