采用机械搅拌和离心分散的方法制备了多壁碳纳米管-有机蒙脱土/环氧树脂复合材料.X射线衍射分析表明,当有机蒙脱土含量为2wt%时,蒙脱土在树脂体系中能够形成离散性结构.断裂韧性测试结果表明,多壁碳纳米管和有机蒙脱土的混杂对环氧树脂具有协同增韧的作用.当有机蒙脱土含量为2wt%,多壁碳纳米管含量为0.1wt%时,所得复合材料的断裂韧性是纯环氧树脂的1.77倍,是2wt%有机蒙脱土/环氧树脂复合材料的1.45倍,是0.1Wt%多壁碳纳米管/环氧树脂复合材料的1.39倍.扫描电镜分析表明,多壁碳纳米管在环氧树脂体系中分散均匀,并与有机蒙脱土片层形成了一定程度的相互穿插和咬合,多壁碳纳米管与有机蒙脱土协同增韧的主要原因是微裂纹增韧、剪切屈服与纤维拔出.
参考文献
[1] | He S J,Wang X B,Guo X Z,Shi K Y,Du A J,Zhang B L.Studies of the properties of a thermosetting epoxy modified with block copolymers[J].Polymer International,2005,64(11):1543-1548. |
[2] | Zubeldia A,Larranaga M,Remiro P,Mondragon L.Fracture toughening of epoxy resins of different molecular matrices with blends of weights and other modifiers[J].Journal of Polymer Science Part B:Polymer Physics,2004,42(21):3920-3933. |
[3] | Choi Jiwon,Yee A F,Laine R M.Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles:A three-component hybrid system[J].Macromolecules,2004,37(9):3267-3276. |
[4] | Harani H,Fellahi I S,Bakar M.Toughening of epoxy resin using hydroxyl-terminated polyesters[J].J Appl Polym Sci,1999,71:29-38. |
[5] | Mohan T P,Ramesh K M,Velmurugan R.Mechanical and barrier properties of epoxy polymer filled with nanolayered silicate clay particles[J].J Mater Sci,2006,41:2929-2937. |
[6] | Rama D,Becker O.Nanocomposites based on a combination of epoxy resin,hyperbranched epoxy and a layered silicate[J].Polymer,2003,44:7449-7457. |
[7] | Becker O,Varley R,Simon G.Morphology thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins[J].Polymer,2002,43:4365-4373. |
[8] | Liu W P,Hoa S V.Organoclay-modified high performance epoxy nanocomposites[J].Composites Science and Technology,2005,65:307-316. |
[9] | 张楷亮,王立新,王芳,任丽,酸酐固化环氧树脂-有机蒙脱土纳米复合材料的制备及性能测试[J].复合材料学报,2004,21(1):114-118.Zhang Kailiang,Wang Lixin,Wang Fang,Ran Li.Study on preparation and properties of epoxy and organic montmorillonite nanocomposites cured by anhydride[J].Acta Materiae Compositae Sinica,2004,21(1):114-118. |
[10] | lijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58. |
[11] | Gojny F H,Wichmann M H G,Fiedler B,Schulte K.Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites:A comparative study[J].Composite Science and Technology,2003,65:2300-2313. |
[12] | Lau K T,Hui D.Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures[J].Carbon,2002,40:1605-1606. |
[13] | Gojny F H,Wichmann M H G,Kopke U,Fiedler B,Schulte K.Carbon nanotube-reinforced epoxy-composites:Enhanced stiffness and fracture toughness at low nanotube content[J].Composites Science and Technology,2004,64:2363-2371. |
[14] | Thostenson E T,Chou T W.On the elastic properties of carbon nanotube-based composites:Modcling and characterization[J].J Phys D:Appl Phys,2003,36:573-582. |
[15] | Velazquez-Castillo R,Reyes-Gasga J,Garcia-Gutierrez D I,Jose-Yacaman M.Nanoscale characterization of nautilus shell structure:An example of natural self-assembly[J].J Mater Res,2006,21(6):1484-1489. |
[16] | Katti K S,Katti D R,Pradhan S M,Bhosle A.Platelet interlocks are the key to toughness and strength in nacre[J].J Mater Res,2005,20(5):1097-1489. |
[17] | Wang J,xu Y,Zhao Y,Huang Y,Jiang L,Wu J,Xu D.Morphology and crystalline characterization of abalone shell and mimetic mineralization[J].J Cryst Growth,2003,252(1):367-371. |
[18] | Lin A,Andre M.Growth and structure in abalone shell[J].Mater Sci Eng A,2005,390:27-41. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%