假设镶嵌在介质层(如SiO2、SiC)中的纳米晶(如Si、Ge、Sn)为球形量子点,考虑到电子在纳米晶和介质层中的有效质量差异,对镶嵌在介质层中单电子的所有束缚态的能量和波函数进行精确求解,分析了量子点半径、势垒高度、电子有效质量等对能级的影响.计算结果表明,量子限制效应随着量子点半径的减小而急剧增强,不同材料电子的有效质量对电子能级也有重要影响.Sn纳米晶的半径为22nm左右,Ge的半径和Si的半径分别约为10nm和7nm时,能观察到较为明显的量子限制效应.本模型提出的计算方法快速而准确,并适用于任意尺寸、任意势垒和任意材料的球方势阱量子点系统.
参考文献
[1] | Baron T;Gentile P;Magnea N et al.Single-electron charging effect in individual Si nanocrystals[J].Applied Physics Letters,2003,79(08):1175. |
[2] | Niquet Y M;Delerue C;Allan G et al.Method for tightbinding parametrization:Application to silicon nanostructures[J].Physical Review B:Condensed Matter,2000,62(08):5109. |
[3] | Leyronas X;Combescot M .Quantum wells,wires and dots with finite barrier:Analytical expressions of the bound states[J].Solid State Communications,2001,119(10-11):613. |
[4] | G. Iannaccone;P. Coli .Three-dimensional simulation of nanocrystal Flash memories[J].Applied physics letters,2001(14):2046-2048. |
[5] | Johann See;Philippe Dollfus;Sylvie Galdin .Comparison of a density functional theory and a Hartree treatment of silicon quantum dot[J].Journal of Applied Physics,2002(6):3141-3146. |
[6] | Zhao YF.;Li LS.;Wang LJ.;Hui Z.;Li TJ.;Jing XG. .CALCULATION OF ELECTRONIC ENERGY LEVELS IN ARTIFICIALLY CONFINED CAVITIES OF A SPHERE AND A CIRCULAR CYLINDER[J].Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena,1997(4):1452-1455. |
[7] | Weinberg Z A .On tunneling in metal-oxide-silicon structures[J].Journal of Applied Physics,1982,53(07):5052. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%