采用热压工艺制备了硅酸铝纤维/TCP生物功能梯度材料(FGM).采用X射线衍射分析、扫描电镜、EDAX线扫描能谱分析、密度分析及洛氏硬度分析对FGM进行了研究,结果表明:纤维含量分布呈轴向对称梯度变化.FGM整体完好,无破损或裂纹出现.FGM在宏观上呈现较模糊的梯度分布,微观上则表现出成分的连续变化.TCP基体与纤维结合紧密.FGM中TCP与硅酸铝纤维及热压模之间均未发生化学反应生成杂质化合物,HA至TCP的相变是因为羟基磷灰石的分解产生.随纤维含量增加,FGM各梯度层的断裂形式由脆性断裂逐渐转变为韧性断裂,且韧性程度随纤维含量增加而增强.各梯度层硬度和相对密度随纤维含量的增加而提高,且在纤维含量为60 vol%时达到最高,分别为92.7 MPa和86 .5%.
参考文献
[1] | Andronescu E,Stefan E,Dinu E,et al.Hydroxyapatite synthesis[J].Key Engineering Materials,2001,211(3):1595-1598. |
[2] | BaeCJ,KimH W,Koh Y H,et al.Hydroxyapatite (HA) bone scaffolds with controlled macrochannel pores[J].Journal of Materials Science:Materials in Medicine,2006,17(6):517-521. |
[3] | 修稚萌,崔建东,白华,孙旭东.羟基磷灰石/钛网状复合材料的制备与性能[J].东北大学学报,2007,28(6):821-824.Xiu Zhimeng,Cui Jiandong,Bai Hua,Sun Xudong.Fabrication of hydroxyapatite/Ti network composites[J].Journal of Northeast University,2007,28(6):821-824. |
[4] | Zou J P,Ruan J M,Huang B Y,et al.Physico-chemical properties and microstructure of hydroxyapatite-316Lstainless steel biomaterials[J].Journal of Central South University of Technology,2004,11(2):113-118. |
[5] | 沈烈,乔飞,张宇强,等.碳纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能[J].复合材料学报,2007,24(5):61-65.Shen Lie,Qiao Fei,Zhang Yuqiang,et al.Mechanical properties and degradation properties in vitro of carbon reinforced hydroxyapatite/polylactide composites[J].Acta Materiae Compositae Sinica,2007,24(5):61-65. |
[6] | Wu Z J,He L P,Chert Z Z.Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium[J]-Transactions of Nonferrous Metals Society of China,2006,16(2):259-266. |
[7] | Oktar F N.Hydroxyapatite-TiO2 composites[J]-Materials Letters,2006,60(18):2207-2210. |
[8] | Zhang L M,Shen Q,Fang Q,et al.Design and preparation of Al2TiO5/Al2O3 FGM[J].Materials Science Forum,2003,423:187-190. |
[9] | Ozieblo A,Wejrzanowski T,Konopka K,et al.Mierostructure of Al2O3-Fe FGM obtained by modified slipcasting method[J].Materials Science Forum,2005,492:665-670. |
[10] | 邹偷鹏,阮建明,周忠诚,等.真空烧结制备316L不锈钢纤维/HA复合生物材料及其理化性能[J].复合材料学报,2005,22(5):39-46.Zou Jianpeng,Ruan Jianming,Zhou Zhongcheng,et al.Vacuum sintering fabrication and physico-chemical properties of 316L stainless fibre/HA composite biomaterials[J].Aeta Materiae Compositae Sinica,2005,22(5):39-46. |
[11] | Chu C L,Zhu J C,Yin Z D,et al.Optimal design and fabrication of hydroxyapatite-Ti asymmetrical functionally graded biomaterial[J].Materials Science and Engineering A,2003,348(1):244-250. |
[12] | 朱景川,储成林,尹钟大.羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度[J].稀有金属材料与工程,2003,23(6):432-435.Zhu Jingchuan,Chu Chenglin,Yin Zhongda.Bonding strength of hydroxyapatite/Ti FGM implant to bone[J].Rare Metal Materials and Engineering,2003,23(6):432-435. |
[13] | We M,Ruys A J,Swain M V,et al.Hydroxyapatite-coated metals:lnterfacial reactions during sintering[J].Journal of Materials Science:Materials in Medicine,2005,16(2):101-106. |
[14] | 邹俭鹏,阮建明,周忠诚,黄伯云,陈启元.316L纤维尺寸和含量对HA-ZrO2(CaO)/316L纤维复合生物材料性能的影响[J].无机材料学报,2007,22(5):1001-1006.Zou Jianpeng,Ruan Jianming,Zhou Zhongcheng,Huang Baiyun,Chen Qiyuan.Influence of 316L fibre's size and contents on the properties of HA-ZrO2 (CaO)/316L fibre biocomposite[J].Journal of Inorganic Materials,2007,22(5):1001-1006. |
[15] | 阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004:181-189.Ruan Jianming,Zou Jianpeng,Huang Baiyun.Biomaterials Science[M].Beijing:Science Press,2004:181-189. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%