用机械混合法制备含有不同质量分数铂的活性炭,研究了压电材料PMN-PT产生的电荷对含铂活性炭氢气吸附性能的影响.结果表明,在高压氢气条件下PMN-PT产生的电荷能增强铂和活性炭颗粒对氢气分子的吸附,并加速氢气分子的解离和氢原子的扩散,使含铂活性炭的储氢量明显提高.铂产生的氢溢流作用有效地提高了活性炭的氢气吸附量.在室温和8 MPa氢气压力条件下PMN-PT使活性炭(NAC)氢气吸附量产生的增长幅度为15%,使含有质量分数0.83%,l%和1.25%铂的活性炭氢气吸附量增长的幅度分别为36.5%,39.3%和43.9%.
参考文献
[1] | K.Mark Thomas,Hydrogen adsorption and storage on porous materials,Catal.Today,120,389(2007) |
[2] | H.Jin,Y.S.Lee,(.Hong,Hydrogen adsorption characteristics of activated carbon,Catal.Today,120,399(2007) |
[3] | M.G.Nijkamp,JEMJ.Rasymakers,A.J.Van Dillen,K.P.De Jong,Hydrogen storage using physisorptionmaterials demands,Appl.Phys.A,72,619(2001) |
[4] | X.B.Zhao,B.Xiao,A.J.Fletcher,K.M.Thomas,Hydrogen adsorption on functionalized nanoporous activated carbons,J.Phys.Chem.B,109,8880(2005) |
[5] | Z.Yang,Y.Xia,R.Mokaya,Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials,J.Am.Chem.Soc.,129,1673(2007) |
[6] | B.Panella,M.Hirscher,S.Roth,Hydrogen adsorption in different carbon nanostructures,Carbon,43,2209(2005) |
[7] | R.Dash,J.Chmiola,G.Yushin,Y.Gogotsi,G.Landisio,J.Singer,J.Fischer,S.Kucheyev,Titanium carbide derived nanoporous carbon for energy-related applications,Carbon,44,2489(2006) |
[8] | M.Shiraishi,T.Takenobu,H.Kataura,M.Ata,Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms,Appl.Phys.A,78,947(2004) |
[9] | E.Poirier,R.Chahine,P.Be'nard,D.Cossement,L.Lafi,E.Me'lancon,T.K.Bose,S.De'silets,Storage of hydrogen on single-walled carbon nanotubes and other carbon structures,Appl.Phys.A,78,961(2004) |
[10] | B.Panella,M.Hirscher,B.Ludescher,Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials,Microporous Mesoporous Mater.,103,230(2007) |
[11] | A.D.Lueking,R.T.Yang,Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes-implications for hydrogen storage,J.Catal.,206,165(2002) |
[12] | F.H.Yang,R.T.Yang,Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes,Carbon,40,437(2002) |
[13] | R.T.Yang,Y.Wang,Catalyzed hydrogen spillover for hydrogen storage,J.Am.Chem.Soc.,131,4224(2009) |
[14] | A.J.Robell,E.V.Ballou,M.Boudart,Surface diffusion of hydrogen on carbon,J.Phys.Chem.,68,2748(1964) |
[15] | S.T.Srinivas,P.K.Rao,Direct observation of hydrogen spillover on carbon-supported platinum and its influence on the hydrogenation of benzene,J.Catal.,148,470(1994) |
[16] | A.D.Rud,A.M.Lakhnik,V.G.Ivanchenko,V.N.Uvarov,A.A.Shkola,V.A.Dekhtyarenko,L.I.Ivaschuk,N.I.Kuskova,Hydrogen storage of the Mg-C composites,Int.J.Hydrogen Energy,33,1310(2008) |
[17] | M.Boudart,M.A.Vannice,J.E.Benson,Adlineation,portholes and spillover,Z.Phys.Chem.Neue Folge,64,171(1969) |
[18] | R.B.Levy,M.Boudart,The kinetics and mechanism of spillover,J.Catal.,32,304(1974) |
[19] | W.C.Neikam,M.A.Vannice,Hydrogen spillover in the Pt black/Ce-Y zeolite/perylene system,J.Catal.,27,207(1972) |
[20] | J.Y.Hwang,S.Z.Shi,B.W.Li,X.Sun,Storing hydrogen with perhydrides,Advanced Materials for Energy Conversion Ⅲ.TMS (The Minerals,Metals & Materials Society,2006) p.101 |
[21] | W.Liu,Y.H.Zhao,J.Nguyen,Y.Li,Q.Jiang,E.J.Lavernia,Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphenes,Carbon,47,3452(2009) |
[22] | S.Z.Shi,J.Y.Hwang,X.Li,X.Sun,Enhanced hydrogen sorption on carbon and nio in the presence of a piezoelectric element,Energy Fuels,23,6085(2009) |
[23] | T.P.Blacha,E.M.A.Gray,Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light-atom hosts,J.Alloys Compd.,446-447,692(2007) |
[24] | L.F.Wang,F.H.Yang,R.T.Yang,Effect of surface oxygen groups in carbons on hydrogen storage by spillover,Ind Eng.Chem.Res.,48,2920(2009) |
[25] | X.W.Sha,M.T.Knippenberg,A.C.Cooper,G.P.Pez,H.S.Cheng,Dynamics of hydrogen spillover on carbonbased materials,J.Phys.Chem.C,112,17465(2008) |
[26] | N.Park,S.Hong,G.Kim,S.H.Jhi,Computational study of hydrogen storage characteristics of covalent-bonded graphenes,J.Am.Chem.Soc.,129,8999(2007) |
[27] | P.R.Kemper,P.Weis,M.T.Bowers,P.Maitre,Origin of bonding interactions in Cu+(H2)n clusters:an experimental and theoretical investigation,J.Am.Chem.Soc.,120,13494(1998) |
[28] | J.E.Bushnell,P.Maitre,P.R.Kemper,M.T.Bowers,Binding energies of Ti+ (H2)(1-6) clusters:theory and experiment,J.Chem.Phys.,106,10153(1997) |
[29] | P.R.Kemper,J.Bushnell,Gxon Helden,M.T.Bowers,Cobalt-hydrogen (Co+.cntdot.(H2),) clusters:binding energies and molecular parameters,J.Phys.Chem.,97,52(1993) |
[30] | L.Andrews,X.Wang,Infrared spectra and structures of the stable CuH2-,AgH2,AuHCuH2-,and AuH4-anions and the AuH2 molecule,J.Am.Chem.Soc.,125,11751(2003) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%