欢迎登录材料期刊网

材料期刊网

高级检索

通过1.25Cr0.5Mo钢高温环境应力控制的疲劳-蠕变交互作用试验,揭示和分析了1.25Cr0.5Mo钢高温疲劳-蠕变交互作用下应力循环特性以及平均应变、非弹性应变范围等参数随温度、加载历史、加载水平的变化规律,在此基础上,利用扫描电镜对试样断口进行了分析.研究表明:高温环境下,材料的应力循环特性依赖于加载水平和加载历史,平均应变、非弹性应变范围等参数依赖于温度、加载水平和加载历史,材料的断裂从以解理断裂为代表的脆性断裂过渡到以韧窝型剪切断裂为代表的延性断裂,为混合型断裂.

参考文献

[1] 张丽,冯爱秀,于美娜,郭晶.有关特殊用途Cr-Mo耐热钢压力容器方面的新认识[J].化工装备技术,2013(06):53-60,63.
[2] Z. Azari;M. Abbadi;H. Moustabchir;M. Lebienvenu .The influence of fatigue cycling on the oxidation kinetics and crack initiation of a Cr-Mo steel[J].International Journal of Fatigue,2008(3):517-527.
[3] S.Y. Bae;H.G. Kang;H.S. Yun;C.W. Kim;D.B. Lee;B.S. Lim .Oxidation and fatigue crack propagation in the range of low stress intensityfactor in relation to the microstructure in P122 Cr-Mo steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):262-266.
[4] HongWei Zhou;YiZhu He;Hui Zhang;YuWan Cen.Influence of dynamic strain aging pre-treatment on the low-cycle fatigue behavior of modified 9Cr-1Mo steel[J].International Journal of Fatigue,2013:83-89.
[5] X. Yu;S.S. Babu;H. Terasaki .Correlation of precipitate stability to increased creep resistance of Cr-Mo steel welds[J].Acta materialia,2013(6):2194-2206.
[6] Hore, S.;Ghosh, R.N. .Computer simulation of the high temperature creep behaviour of Cr-Mo steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(19/20):6095-6102.
[7] A. Aghajani;Ch. Somsen;J.Pesicka;W. Bendick;B. Hahn;G. Eggeler.Microstructural evolution in T24, a modified 2(1 /4)Cr-1Mo steel during creepafter different heat treatments[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009:130-135.
[8] S.-H. Song;J.Wu;X.-J. Wei;D. Kumar;S.-J. Liu;L.-Q. Weng .Creep property evaluation of a 2.25Cr–1Mo low alloy steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(9):2398-2403.
[9] 于涛,施惠基.长期高温使用后2.25Cr-1Mo钢焊接接头热影响区的蠕变损伤[J].机械工程材料,2011(04):1-3,31.
[10] 孙宇鹏,董俊华,高炳军.1.25Cr0.5Mo合金钢的高温单轴棘轮效应实验研究[J].河北工业大学学报,2012(02):52-55.
[11] 李国成,王为良,潘锦泰.交变载荷下1.25Cr-0.5Mo钢裂纹疲劳扩展数值模拟[J].化工机械,2010(05):613-616.
[12] 徐鸿,袁军,倪永中.基于Norton-Bailey模型的P92钢初期蠕变过程分析[J].材料科学与工程学报,2013(04):568-571,567.
[13] 张中奎,王佰智,刘大顺,温志勋,岳珠峰.DD6单晶合金蠕变特性及断裂机理[J].材料科学与工程学报,2012(03):375-379.
[14] 王章忠,杜百平,李年.Ⅲ型过载对调质钢Ⅰ型疲劳裂纹扩展门槛的影响[J].材料科学与工程学报,2003(02):251-254.
[15] 于海生,丰崇友,王兴国,舒卡耶夫 谢.尼..多轴低周载荷下钛合金BT9疲劳损伤的微观机理[J].材料科学与工程学报,2006(02):282-285.
[16] 张国庆,王成焘.曲轴材料48MnV钢及其具有3Cr13电弧喷涂涂层的疲劳行为[J].材料科学与工程学报,2011(03):448-454.
[17] 中国国家标准化管理委员会.金属材料轴向等幅低循环疲劳试验方法 GB/T 15248-2008[M].北京:中国标准出版社,2008
[18] B.I.桑多尔.循环应力与循环应变的基本原理[M].北京:科学出版社,1985
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%