为了解玻璃化过程氢键结构特性,采用分子模拟的手段计算了三种压力下的水玻璃化过程氢键的角度、距离、生命期和数量.计算结果显示:(i)氢键角度呈现泊松分布的特征,随着温度降低分布氢键角度分布范围变窄,峰值变高,在0~13°范围,随温度降低,分布数值变大;而在大于13°,随温度降低,分布数值变小;(ii)氢键距离也呈现泊松分布的特征,随着温度降低分布氢键距离分布范围变窄,峰值变高,在0.15~0.18nm范围,随温度降低,分布数值变大;而在0.18~0.27 nm范围,随温度降低,分布数值变小;(iii)氢键生命周期以类似自变量系数为负的幂函数或者指数函数形式分布,随温度降低,氢键生命期的分布范围和分布数值都呈现明显差异;(iV)压力对氢键生命期分布曲线的趋势无明显影响,但是低于一定温度不同压力下的氢键生命期分布曲线波动程度出现差异,导致平均生命期出现差异,(V)三种压力下氢键总量和每个水分子氢键平均数量都随温度的降低而上升,并且数值很接近.随着玻璃化进程的进行,完全自由的水分子数(f0)逐渐降低,形成四面体状的氢键数(f4)从290 K到260 K时有急剧上升的过程,以后就变化不大.形成一个,两个,三个氢键的份额总体上呈现变大的趋势.f4跟f1 f2,f3,比起来很小,反映了结晶度很低.
参考文献
[1] | C.A.Angell .Liquid Fragility and the Glass Transition in water and Aqueous Solutions[J].Chemical Reviews,2002(8):2627-2650. |
[2] | S.Montserrat;Y.Calventus;J.M.Hutchinson .Effect of cooling rate and frequency on the calorimetric measurement of the glass transition[J].Polymer: The International Journal for the Science and Technology of Polymers,2005(26):12181-12189. |
[3] | Paul F. McMillan;Martin C. Wilding .High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2009(10/12):722-732. |
[4] | Jürn W.P. Schmelzer;Ivan Gutzow .Structural order parameters, the Prigogine-Defay ratio and the behavior of the entropy in vitrification[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2009(10/12):653-662. |
[5] | Jinwu Wang;Marie-Pierre G. Laborie;Michael P. Wolcott .Kinetic analysis of phenol-formaldehyde bonded wood joints with dynamical mechanical analysis[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2009(1/2):58-62. |
[6] | Y. Yang;Y. Xiao;J.H.L. Voncken;N. Wilson .Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator[J].Journal of hazardous materials,2008(1/3):871-879. |
[7] | K. Moustakas;D. Fatta;S. Malamis;K. Haralambous;M. Loizidou .Demonstration plasma gasification/vitrification system for effective hazardous waste treatment[J].Journal of hazardous materials,2005(1/3):120-126. |
[8] | E. Gomez;D. Amutha Rani;C.R. Cheeseman;D. Deegan;M. Wise;A.R. Boccaccini .Thermal Plasma Technology For The Treatment Of Wastes: A Critical Review[J].Journal of hazardous materials,2009(2/3):614-626. |
[9] | Yi-Ming Kuo;Jian-Wen Wang;Chih-Ta Wang;Cheng-Hsien Tsai .Effect of water quenching and SiO_2 addition during vitrification of fly ash Part 1: On the crystalline characteristics of slags[J].Journal of hazardous materials,2008(3):994-1001. |
[10] | Dougherty RC.;Howard LN. .Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties[J].The Journal of Chemical Physics,1998(17):7379-7393. |
[11] | Netz PA.;Starr FW.;Barbosa MC.;Stanley HE. .Relation between structural and dynamical anomalies in supercooled water[J].Physica, A. Statistical mechanics and its applications,2002(1/4):470-476. |
[12] | K.J. Tielrooij;C. Petersen;Y.L.A. Rezus;H.J. Bakker .Reorientation of HDO in liquid H_2O at different temperatures: Comparison of first and second order correlation functions[J].Chemical Physics Letters,2009(1/3):71-74. |
[13] | 陈聪,李维仲.甘油水溶液氢键特性的分子动力学模拟[J].物理化学学报,2009(03):507-512. |
[14] | 孙炜,陈中,黄素逸.电场作用下甲醇结构和扩散性质的分子动力学模拟[J].化工学报,2005(05):763-768. |
[15] | 孙炜,陈中,黄素逸.液态甲醇微观结构的分子动力学模拟[J].华中科技大学学报(自然科学版),2005(11):51-53. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%