欢迎登录材料期刊网

材料期刊网

高级检索

基于高速压制成形的工艺原理,对金属粉体成形过程中的高应变率、粘性效应和硬化速率先上升后下降的变形特性进行分析.将非线性弹簧、线性弹簧和高应变率Maxwell单元并联构成复合非线性粘弹滞体,并用来描述压制过程中金属粉体的高应变率和粘性效应特征:将非线性弹簧的形变指数视为应变的函数,用形变指数在压制过程中的变化来描述金属粉体硬化速率先上升后下降的变形特征,构建金属粉体高速压制成形的本构关系.分别用线性、二次和三次函数来近似形变指数,分析相应的应力一应变曲线.结果表明:所构建的本构方程能描述金属粉体高速压制成形的变形特性.

参考文献

[1] SKOGLUND P.High density PM components by high velocity compaction[A].Ypsilanti:MPIE,2001:16-17.
[2] 迟悦,果世驹,孟飞,杨霞,张恒,连玉栋.粉末冶金高速压制成形技术[J].粉末冶金工业,2005(06):41-45.
[3] HVC punches PM to new mass production limits[J].Metal Powder Report,2002(9):26-30.
[4] R.L. ORBAN .NEW RESEARCH DIRECTIONS IN POWDER METALLURGY[J].Romanian reports in physics,2004(3):557-570.
[5] Barendvanden Bos;Christer Fors;Tomas Larsson .Industrial implementation of high velocity compaction for improved properties[J].Powder Metallurgy,2006(2):107-109.
[6] JONSéN P;HAGGBLAD H A;TROIVEL;FURUB ERG J ALLROTH S SKOGLUND P .Green body behavior of high velocity pressed metal powder[J].Materials Science Forum,2007,534/536:289-292.
[7] 王建忠,曲选辉,尹海清,周晟宇.铁粉的高速压制成形[J].材料研究学报,2008(06):589-592.
[8] J.Z. Wang;X.H. Qu;H.Q. Yin .High velocity compaction of ferrous powder[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2009(1):131-136.
[9] ASLUND C.High velocity compaction of stainless steel gas atomized power[A].Shrewsbury,UK.:EPMA,2004:533-564.
[10] Azhdar B;Stenberg B;Kari L .Development of a High-Velocity Compaction process for polymer powders[J].Polymer Testing,2005(7):909-919.
[11] D.Jauffres;O.Lame;G.Vigier .Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction[J].Polymer: The International Journal for the Science and Technology of Polymers,2007(21):6374-6383.
[12] 王建忠,曲选辉,尹海清,周晟宇,易明军.电解铜粉高速压制成形[J].中国有色金属学报,2008(08):1498-1503.
[13] 周晟宇,尹海清,曲选辉.粉末冶金高速压制技术的研究进展[J].材料导报,2007(07):79-81,96.
[14] HAGGBLAD H A;HOCKAUF M;ERIKSSON M .Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titaulum powder using a modified split Hopkinson set-up[J].Powder Technology,2005,154:33-42.
[15] G. Sethi;E. Hauck;R. M. German .High velocity compaction compared with conventional compaction[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2006(8):955-959.
[16] 果世驹,迟悦,孟飞,杨霞.粉末冶金高速压制成形的压制方程[J].粉末冶金材料科学与工程,2006(01):24-27.
[17] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,2004
[18] 王礼立.应力波基础[M].北京:国防工业出版社,2005
[19] PELIIETHHKOB B Ф;CBHCTYH ли;CEPRIOK F E.The temperature changes of metal powder during high velocity compaction[J].Powder Metallurgy,1983(01):5-7.
[20] CEдIOK F F;CAXHEHKO A B;CBHCTУH л H.The experience of indnstry application for high velocity compaction of metal powder[J].Powder Metallurgy,2000(09):108-115.
[21] 黄培云;金展鹏;陈振华.粉末冶金基础理论与新技术[M].长沙:中南工业大学出版社,1995
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%