腐蚀与防护, 2012, 33(5): 357-361.
活泼金属表面缓蚀自组装膜研究进展
屈钧娥 1, , 陈庚 2, , 王海人 3, , 江燕 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以天然斜发沸石为研究对象,采用不同改造方法对其进行改造,研究发现LaCl3化学改造2h,500℃高温下焙烧1h后所得沸石基复合环境材料去除污水中磷的性能有了较大提高。SEM和EDS测试材料的结果表明,天然沸石改造后其表面形貌发生了改变,孔结构得到了扩展,改造前后材料主要成分均为Si、Al、O,但改造后材料中La离子含量明显增加。材料表面结构测试分析发现,改造后复合材料孔道得到拓宽,孔径分布更为均匀,孔容积、比表面积、孔径数量和孔隙率与沸石原材料相比均有所增加。在此基础上,研究了沸石基复合环境材料用量、处理时间及废水pH值对材料除磷效果的影响,结果表明,材料在用量1.2g/L、处理时间3h、pH值3~7的条件下,对废水中磷去除率可达98.46%。","authors":[{"authorName":"董颖博","id":"684dfd9c-a833-4f43-8213-9544650b501f","originalAuthorName":"董颖博"},{"authorName":"林海","id":"c7d1a26f-887e-4151-b28f-5302c3e5e94c","originalAuthorName":"林海"},{"authorName":"霍汉鑫","id":"3c7fcadc-076d-4d5f-9311-9803a622d300","originalAuthorName":"霍汉鑫"}],"doi":"","fpage":"2608","id":"8768a803-0387-4dbf-9f30-43d89adbe31a","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"41965268-2306-4395-92ba-48c55ca80b83","keyword":"天然沸石","originalKeyword":"天然沸石"},{"id":"a247cb09-7522-47be-a4ae-1250e9d64af6","keyword":"复合环境材料","originalKeyword":"复合环境材料"},{"id":"1c30b282-d9cb-4bca-8469-6fb96c6b646d","keyword":"表面结构","originalKeyword":"表面结构"},{"id":"91e11dca-77a0-42a3-923f-664077b9ae88","keyword":"颗粒改造","originalKeyword":"颗粒改造"},{"id":"697d6edf-2626-43e3-90d5-7fbd62db354e","keyword":"吸附除磷","originalKeyword":"吸附除磷"}],"language":"zh","publisherId":"gncl201219007","title":"改造对沸石基复合环境材料表面结构的影响及应用","volume":"43","year":"2012"},{"abstractinfo":"自然环境加速试验是飞机结构日历寿命评定的重要方法,加速环境谱的编制则是开展加速试验的前提.以某海域海洋大气环境谱为基础,针对某直升机典型复合材料提出了加速腐蚀环境谱并预计了加速关系.开展了舰上自然暴露试验和试验室加速腐蚀试验,从吸湿量和微观形貌两个方面采用腐蚀程度对比法验证了舰上自然环境与加速腐蚀环境谱之间的当量关系.对比结果表明,舰面暴露1 a和试验室加速腐蚀1434 h后试验件腐蚀程度在95%置信度下一致.","authors":[{"authorName":"刘成臣","id":"2649dbde-7240-463b-a2c1-391a4540a486","originalAuthorName":"刘成臣"},{"authorName":"王浩伟","id":"ba9eb660-8ae5-4575-90eb-47bb5ed80db6","originalAuthorName":"王浩伟"},{"authorName":"鲁国富","id":"9b77b7a3-dbd5-4102-8bf0-fccae5e488c3","originalAuthorName":"鲁国富"},{"authorName":"何卫平","id":"a19d6e15-1bf0-4bfd-ae29-c3b7983cea61","originalAuthorName":"何卫平"}],"doi":"","fpage":"692","id":"4d6a3a77-bc86-419f-a60a-89c133dea24a","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"fc48d7c9-f034-4890-883b-b58ae79cfd32","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"63024b9d-cb47-476b-8a87-2d296d62abdc","keyword":"加速腐蚀","originalKeyword":"加速腐蚀"},{"id":"cc79c867-e8c4-43a2-bc02-d802c6d08b1c","keyword":"环境谱","originalKeyword":"环境谱"},{"id":"7272f647-8a38-40b3-90b1-67f3d59c4c1b","keyword":"当量加速关系","originalKeyword":"当量加速关系"}],"language":"zh","publisherId":"fsyfh201407015","title":"复合材料在海洋大气环境中的加速环境谱及当量化","volume":"35","year":"2014"},{"abstractinfo":"采用质损率、FTIR、DSC、动态热力学(DMA)及力学性能等作为评价指标,选择了一种耐高温复合材料的环氧树脂体系,以该树脂体系为基体制备了用于模拟空间环境的复合材料真空附舱,通过测试其常温及高温状态下的结构稳定性、漏气率和出气率等指标进行了应用评估。结果表明:该真空附舱在150℃高真空环境下结构稳定,高温性能达到国际领先水平,透波性能优于已报道的同类产品,可满足空间环境使用。","authors":[{"authorName":"柴朋军","id":"db0fd45a-f01d-4907-885b-9ba726902dbb","originalAuthorName":"柴朋军"},{"authorName":"王嵘","id":"1f55ddba-2644-4d03-811c-40d786283f60","originalAuthorName":"王嵘"},{"authorName":"徐晋伟","id":"86f31a45-b124-4c02-8152-679e63855f37","originalAuthorName":"徐晋伟"},{"authorName":"丁萍","id":"f5953f99-6a74-49b8-8b12-e4c54d685121","originalAuthorName":"丁萍"},{"authorName":"王继辉","id":"30972081-8e29-457f-bb37-7e87da681a02","originalAuthorName":"王继辉"}],"doi":"10.13801/j.cnki.fhclxb.20160328.008","fpage":"1468","id":"23777cf6-62db-46b7-bd0f-70858c9466d4","issue":"7","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8fd405b6-b8a7-48ee-a377-405972bfc4c3","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"cdd444be-69b6-4736-a459-a55f60ca3f33","keyword":"空间环境","originalKeyword":"空间环境"},{"id":"bd9df0b0-cb31-40cd-8a7f-fd19286504d1","keyword":"高温","originalKeyword":"高温"},{"id":"17b16d1e-6f4e-4415-bf96-901a53f422d2","keyword":"真空附舱","originalKeyword":"真空附舱"},{"id":"88ef3262-126c-4fcc-ac3b-7fa15923d42a","keyword":"出气率","originalKeyword":"出气率"}],"language":"zh","publisherId":"fhclxb201607017","title":"空间环境复合材料的性能研究与表征","volume":"33","year":"2016"},{"abstractinfo":"分析了复合材料湿热和热氧老化机理,对层合板复合材料及夹芯复合材料进行交变湿热和高低温加速环境试验,研究了材料的质量、弯曲性能等随老化环境、老化时间的变化情况.结果表明,复合材料具有良好的耐湿热和高低温环境稳定性,夹芯复合材料较层合板复合材料表现为更佳的性能稳定性.","authors":[{"authorName":"张笑梅","id":"73bee9c4-65e6-4226-956a-301f49ad93f7","originalAuthorName":"张笑梅"},{"authorName":"郭万涛","id":"5e33b7d0-6b1c-43f4-b053-08ab062e57f9","originalAuthorName":"郭万涛"}],"doi":"","fpage":"41","id":"7a7c825b-75ef-4b34-919c-822c6157aa73","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"5db2bcb6-caa1-4ee2-b3fb-a543ed8dc89b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"95c35a08-7526-4725-9389-c1ceaaedd691","keyword":"层合板复合材料","originalKeyword":"层合板复合材料"},{"id":"4f46af80-997d-4f61-bfec-e16ad418947a","keyword":"夹芯复合材料","originalKeyword":"夹芯复合材料"},{"id":"305d678a-51ca-4184-807d-b3ce0b671626","keyword":"加速老化","originalKeyword":"加速老化"}],"language":"zh","publisherId":"clkfyyy201702008","title":"纤维增强树脂基复合材料环境加速老化性能研究","volume":"32","year":"2017"},{"abstractinfo":"本文讨论了深水环境对复合材料吸湿和力学性能的影响.","authors":[{"authorName":"黄再满","id":"bb208e77-8c1e-4046-989c-771366a595ff","originalAuthorName":"黄再满"}],"doi":"10.3969/j.issn.1003-0999.2000.04.017","fpage":"49","id":"7d1ee7a9-b56e-4377-ad12-937c511e1467","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"5c305b4f-3854-4bc7-bc80-79c73c4d906f","keyword":"吸湿","originalKeyword":"吸湿"},{"id":"c5bad30f-9cb4-405b-a047-3375555f7944","keyword":"深水环境","originalKeyword":"深水环境"},{"id":"e0309a80-675c-4191-85f4-0a754abd7f6c","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"2c79d0dd-3c78-42b8-88e0-14451bbd65bc","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"blgfhcl200004017","title":"深海环境对复合材料吸湿和力学性能的影响","volume":"","year":"2000"},{"abstractinfo":"复合材料胶接修复技术在飞机金属损伤结构上得到了广泛应用,但修复结构在飞机服役期内仍受多种环境条件的作用.为研究多种环境因素对修复结构的影响,利用碳/环氧复合材料补片,对含穿透性裂纹的LY12-CZ铝合金板进行了双面胶接修复,采用试验的方法研究了这种修复方法的合理性,并通过t检验法,考核了复合环境条件对修复结构疲劳寿命的影响.","authors":[{"authorName":"穆志韬","id":"ef412df8-95f2-489f-a51b-3548ac158145","originalAuthorName":"穆志韬"},{"authorName":"牛勇","id":"a773cf61-5a73-4f5d-95d1-bec7a59d9aa0","originalAuthorName":"牛勇"},{"authorName":"李旭东","id":"dde0013a-6c94-446c-96cd-e10db6e24175","originalAuthorName":"李旭东"},{"authorName":"周立建","id":"db0ec3de-de76-4fb1-8028-c702ac7147d9","originalAuthorName":"周立建"}],"doi":"","fpage":"18","id":"86799aa9-bf8b-4e9f-a039-7b948242b00a","issue":"12","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"46d7e4a7-d66f-420a-a758-99a4591f4b64","keyword":"复合材料胶接修复","originalKeyword":"复合材料胶接修复"},{"id":"8946538a-f5b6-478e-8e5f-1d75ed2cdce1","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"2202f5b5-454c-4bc7-8628-91616f7c411e","keyword":"环境试验","originalKeyword":"环境试验"},{"id":"cfc1adc9-828f-4946-b83c-c84c04a1c075","keyword":"疲劳试验","originalKeyword":"疲劳试验"},{"id":"18cc660f-de1d-4edb-9958-c5f597f588c6","keyword":"t检验法","originalKeyword":"t检验法"}],"language":"zh","publisherId":"blgfhcl201512003","title":"复合环境下金属损伤复合材料胶接修复结构疲劳寿命试验研究","volume":"","year":"2015"},{"abstractinfo":"通过试验研究T300/5405复合材料层合板在6种湿热环境下开孔拉伸、开孔压缩的极限强度,分析了湿热环境对开孔复合材料层合板强度性能的影响,对比了不同湿热环境下材料的破坏模式.在有限元仿真方面,通过考虑湿热环境对材料刚度和强度的影响,建立了湿热条件下复合材料开孔层合板极限强度的预测方法,模拟了开孔复合材料层合板在不同湿热环境、不同载荷类型下的损伤演化全过程.有限元预测结果与试验结果的误差在20%以内,验证了该预测方法的有效性.","authors":[{"authorName":"姚宇超","id":"b1a8ed81-7c8e-45d2-adb0-2058f730da4d","originalAuthorName":"姚宇超"},{"authorName":"许希武","id":"1d5214ea-03de-40f8-a5bb-d1d811309804","originalAuthorName":"许希武"},{"authorName":"毛春见","id":"fad4008a-cf02-4697-811a-7852d4e3e1ed","originalAuthorName":"毛春见"}],"doi":"","fpage":"425","id":"1735c23e-30b1-44e3-aa4f-8f91f35db831","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"aed87a92-1847-4dcc-8722-94516aa0858f","keyword":"湿热环境","originalKeyword":"湿热环境"},{"id":"736879e6-9373-4e8b-81f2-799516ee06db","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"3d0887ab-8174-4ea7-8d43-a6285c0b8223","keyword":"渐进损伤","originalKeyword":"渐进损伤"},{"id":"e323c94f-099e-45d4-adb2-861b3e7ea466","keyword":"仿真方法","originalKeyword":"仿真方法"},{"id":"1a5825df-4c23-4a62-8a8a-4fcdfb4e30f0","keyword":"试验验证","originalKeyword":"试验验证"}],"language":"zh","publisherId":"clkxygc201503023","title":"湿热环境下开孔复合材料层合板的强度","volume":"33","year":"2015"},{"abstractinfo":"首先,基于复合材料在湿热环境下的本构关系推导了旋转复合材料梁轴力和弯矩的表达式,分析了温度和湿度对轴力和弯矩的影响,然后,基于d' Alembert原理建立了旋转复合材料梁摆振控制方程,并应用Galer-kin法进行求解,分析了温度和湿度对旋转复合材料梁刚度的影响,最后,通过数值模拟讨论了湿热环境对旋转复合材料梁摆振动力学特性的影响.结果表明:湿热环境对旋转复合材料梁的摆振频率和模态影响显著,摆振频率随湿热环境加剧而降低,热膨胀效应对摆振频率的影响大于材料性能变化对其的影响,湿热环境与旋转的联合作用使模态的节点位置发生明显偏移.","authors":[{"authorName":"蒋宝坤","id":"759c5418-6555-4c3a-9d97-3477c90ec0d4","originalAuthorName":"蒋宝坤"},{"authorName":"张渲铃","id":"ce60c396-c98f-4404-85bf-0a4d0087986d","originalAuthorName":"张渲铃"},{"authorName":"李映辉","id":"6d223f4d-8196-4537-86b7-d4ebb7d90c28","originalAuthorName":"李映辉"}],"doi":"10.13801/j.cnki.fhclxb.20140702.004","fpage":"579","id":"951c100f-8004-409f-9f3c-1dda8b7ea457","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"805f782d-e6a7-46e8-b871-e04206d8f11e","keyword":"湿热环境","originalKeyword":"湿热环境"},{"id":"316df07b-f0ac-49ba-b552-3a7732b7b2ea","keyword":"旋转","originalKeyword":"旋转"},{"id":"4201cdac-0699-4750-bcfc-a33313f4d271","keyword":"复合材料梁","originalKeyword":"复合材料梁"},{"id":"63af5505-96a7-4800-beb7-055ae2179e3d","keyword":"Galerkin法","originalKeyword":"Galerkin法"},{"id":"568c1fea-aca8-4ca7-828c-fae6eddab479","keyword":"摆振特性","originalKeyword":"摆振特性"}],"language":"zh","publisherId":"fhclxb201502036","title":"湿热环境对旋转复合材料梁摆振特性的影响","volume":"32","year":"2015"},{"abstractinfo":"综述了国内外对非连续增强铝基复合材料的环境行为的研究,包括腐蚀形貌和机理、腐蚀电化学、应力腐蚀断裂和氢脆.","authors":[{"authorName":"姚红宇","id":"db225c97-3d1a-4643-bd3b-7f2e1993c5d9","originalAuthorName":"姚红宇"},{"authorName":"宋余九","id":"1f2a2373-a56e-49c5-b547-87faddda85c4","originalAuthorName":"宋余九"},{"authorName":"涂铭旌","id":"9175d1e3-2813-4e86-8ddb-eae2a605f1b4","originalAuthorName":"涂铭旌"}],"categoryName":"|","doi":"","fpage":"58","id":"e0b1bc49-530e-4ab2-8f76-166189f9084a","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"cb3aeb40-7270-461e-889c-4bc1b111e136","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"b4aedce5-76f7-493b-9db7-9d6715655c56","keyword":"null","originalKeyword":"null"},{"id":"4bb04e5e-08a2-43aa-8885-29e219e35996","keyword":"null","originalKeyword":"null"},{"id":"db191f3c-5e17-497e-9a5d-524710397d5c","keyword":"null","originalKeyword":"null"},{"id":"e8d4c889-f7d8-4056-ab8e-1ab8c7772349","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_1997_1_15","title":"非连续增强铝基复合材料的环境行为","volume":"9","year":"1997"},{"abstractinfo":"通过自制压力容器模拟深海环境, 采用称量法获得玻璃纤维增强环氧树脂(GF/CYD-128)层合板在不同压力下吸湿数据, 研究GF/CYD-128层合板在深海环境的吸湿行为。结果表明: 0~3.0 MPa压力范围内GF/CYD-128层合板饱和吸湿量随着压力的增加呈现先下降后增加的趋势, 压力为2.5 MPa时饱和吸湿量最低, 其饱和吸湿量随浸泡压力变化的趋势可用二次多项式描述; GF/CYD-128层合板在深海环境中的吸湿行为呈现non-Fick特征, 但可以采用Langmuir 模型进行描述。利用Langmuir模型准确预测了深海环境中GF/CYD-128层合板的吸湿行为。","authors":[{"authorName":"王春齐","id":"d9215a0b-828b-4fc1-bdfb-560d2989e5d5","originalAuthorName":"王春齐"},{"authorName":"江大志","id":"91a84d44-881a-4fd1-8a76-d8caece4fc89","originalAuthorName":"江大志"},{"authorName":"曾竟成","id":"d7b92e86-210a-4509-9cdc-0590c35b4062","originalAuthorName":"曾竟成"},{"authorName":"肖加余","id":"0ca0d521-e0ee-47af-aafd-fca200c4b218","originalAuthorName":"肖加余"}],"doi":"","fpage":"230","id":"4a7e9f29-4e4c-41ce-8aeb-0dfcf4027e94","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"9873a351-bbe6-4694-847d-e75055472d18","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"d0287b1b-79aa-4833-b7bb-5495b76a345e","keyword":"深海环境","originalKeyword":"深海环境"},{"id":"f79a04ef-0cd3-4490-815e-a973fb8940d1","keyword":"压力","originalKeyword":"压力"},{"id":"40efd98f-0443-4ee5-9a74-79901e96d950","keyword":"吸湿","originalKeyword":"吸湿"},{"id":"4d67b8a1-d997-4a6b-aef8-1c045bb3af63","keyword":"Langrnuir模型","originalKeyword":"Langrnuir模型"}],"language":"zh","publisherId":"fhclxb201205037","title":"深海环境下树脂基复合材料吸湿行为","volume":"29","year":"2012"}],"totalpage":7396,"totalrecord":73951}