欢迎登录材料期刊网

材料期刊网

高级检索

钛及钛合金以其良好的生物相容性,在临床上用于人体硬组织植入和修复。3D打印技术是近年快速发展的特种加工技术,突破了传统加工技术的局限,可实现近净成形,并能够制作出复杂结构,且材料利用率高,设计制作周期短。3D打印技术在个性化外形和内部细微结构加工及快速精确成形方面的巨大优势,使其在医用植入物加工领域备受关注。为此,概述了3D打印成形钛合金人体植入物的优势、应用状况以及3D打印钛合金人体植入物的生物力学适配性能的研究进展,总结了国内3D打印技术在钛合金人体植入物领域的研究现状。

Titanium and titanium alloys are used in the clinical treatment of human hard tissue implant and repair materials due to their biocompatibility .3 D printing technology is a special processing technology in recent years , and has broken the limits of the traditional processing technology .It can achieve near net shape forming , and can produce a complex structure.The material utilization rate is high , and the design-produce cycle is short.3D printing technology has a huge advantage in the fields of personalized appearance , internal fine structure processing and rapid precision forming , so it gets lots of attention in the field of medical implant processing .In this paper , the advantages and the application of 3 D printing titanium alloy human implants were summarized .The research progress of the biomechanical properties of 3 D titanium and titanium alloy human implants were introduced , and the domestic research status of 3 D printing technology in titanium alloy human implants was summarized .

参考文献

[1] Gibson I;Rosen W;Stucker B.Additive manufacturing technologies[M].New York:Springer Science and Business Media,2010:120-133.
[2] Giannatsis J;Dedoussis V .Additive fabrication technologies applied to medicine and health care:A review[J].Intermational Journal of Advanced Manufacturing Technology,2009,40(1):116-127.
[3] Lawrence E. Murr,Sara M. Gaytan,Diana A. Ramirez,Edwin Martinez,Jennifer Hernandez,Krista N. Amato,Patrick W. Shindo,Francisco R. Medina,R.yan B. Wicker.Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies[J].材料科学技术学报:英文版,2012(01):1-14.
[4] Parthasarathy J;Starly B;Raman S et al.Mechanical evaluation of porous titanium (Ti6A14V) structures with electron beam melting(EBM)[J].Journal of the Mechanical Behavior of Biomedical Materials,2010(3):249-259.
[5] Chlebus E;Kuznicka B;Kurynowski T .Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting[J].Materials Characterization,2011,62(5):488-495.
[6] Lethaus B;Poort L;B?ckmann R et al.Additive manufacturing for microvascular reconstruction of the mandible in 20 patients[J].JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY,2012,40(1):43-46.
[7] Pattanayak D K;Fukuda A;Matsushita T et al.Bioactive Ti metal analogous to human cancellous bone:Fabrication by selective laser melting and chemical treatments[J].ACTA BIOMATERIALIA,2011,7(3):1398-1406.
[8] Petzold R;Zeilhofer H F;Kalender W A .Rapid prototyping technology in medicine-basics and applications[J].Computerized Medical Imaging and Graphics,1999,23(5):277-284.
[9] Hurson C;Tansey A;O'Donnchadha B;Nicholson P;Rice J;McElwain J .Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures.[J].Injury,2007(10):1158-1162.
[10] Song Z L;Feng C K;Chiu F Y et al.The clinical significance of rapid prototyping technique in complex spinal deformity surgery-Case sharing and literature review[J].Formosan Journal of Musculoskeletal Disorders,2013,4(3):88-93.
[11] 王晓花,李金山,胡锐,寇宏超.生物医用多孔钛的力学性能及孔结构变形行为[J].中国有色金属学报(英文版),2015(05):1543-1550.
[12] Bartolo P;Kruth J P;Silva J et al.Biomedical production of implants by additive electrochemical and physical processes[J].CIRP ANNALS-MANUFACTURING TECHNOLOGY,2012,61(2):635-655.
[13] Bael S V;Kerckhofs G;Moesen M et al.Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J].Materials Science and Engineering A,2011,528(24):7423-7431.
[14] 李祥,王成焘,张文光,李元超.多孔Ti6A14V植入体电子束制备及其力学性能[J].上海交通大学学报,2009(12):1946-1949.
[15] Melchels F P W;Domingos M A N;Klein TJ et al.Additive manufacturing of tissues and organs[J].Progress in Polymer Science,2012,37(8):1079-1104.
[16] Murr L E;Martinez E;Amato K N et al.Fabrication of metal and alloy components by additive manufacturing:examples of 3D materials science[J].Journal of Materials Research and Technology,2012(1):42-54.
[17] Leuders S;Th?ne M;Riemer A et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013,48(3):300-307.
[18] 杨永强,宋长辉,王迪.激光选区熔化技术及其在个性化医学中的应用[J].机械工程学报,2014(21):140-151.
[19] UNS R30075.Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants[S].West Conshohocken:American Society for Testing Materials,2008.
[20] UNS S31673.Standard Specification for Wrought 18 Chromium-14 Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants[S].West Conshohocken:American Society for Testing Materials,2008.
[21] Heinl P;Müller L;K?rner C et al.Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J].ACTA BIOMATERIALIA,2008,4:1536-1544.
[22] Bertollo N;Assuncao R D;Hancock N J et al.Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model[J].The Journal of Arthroplasty,2012,27(8):1429-1436.
[23] Parthasarathy J;Starly B;Raman S .A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications[J].Journal of Manufacturing Processes,2011,13(2):160-170.
[24] Fukuda A;Takemoto M;Saito T et al.Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J].ACTA BIOMATERIALIA,2011,7(5):2327-2336.
[25] Krishna B V;Bose S;Bandyopadhyay A .Low stiffness porous Ti structures for load-bearing implants[J].ACTA BIOMATERIALIA,2007,3(6):997-1006.
[26] Palmquist A;Snis A;Emanuelsson L et al.Long-term biocompatibility and osseointegration of electron beam melted,freeform-fabricated solid and porous titanium alloy:Experimental studies in sheep[J].JOURNAL OF BIOMATERIALS APPLICATIONS,2013,27(8):1003-1016.
[27] Murr L E;Gaytan S M;Medina F et al.Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays[J].Philosophical Transactions of the Royal Society A,368(1917):1999-2032.
[28] Zhou L;He L;Shang H et al.Correction of hemifacial microsomia with the help of mirror imaging and a rapid prototyping technique:case report[J].British Journal of Oral and Maxillofacial Surgery,2009,47(6):486-488.
[29] Su X B;Yang Y Q;Yu P et al.Development of porous medical implant scaffolds via laser additive manufacturing[J].Transactions of Nonferrous Metals Society of China,2012,22(z1):181-187.
[30] 杨永强,何兴容,吴伟辉,丁焕文,王迪,孙婷婷,黄伟红.选区激光熔化直接成型个性化骨科手术模板[J].中国激光,2009(09):2460-2464.
[31] Lai S S M;Yiu B Y S;Poon A K K et al.Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries[J].Ultrasound in Medicine&Biology,2013,39(9):1654-1664.
[32] Fullerton J N;Frodsham G C;Day R M .3D printing for the many,not the few[J].Nature Biotechnology,2014,32(11):1086-1087.
[33] Holzapfel B M;Reichert J C;Schantz J T et al.How smart do biomaterials need to be? A translational science and clinical point of view[J].Advanced Drug Delivery Reviews,2013,65(4):581-603.
[34] 黄卫东.如何理性看待增材制造(3D打印)技术[J].新材料产业,2013(08):9-12.
[35] 陈扬,蓝涛,钱文斌.3D打印技术在修复骨缺损中的应用研究[J].生物骨科材料与临床研究,2014(01):29-30,34.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%