欢迎登录材料期刊网

材料期刊网

高级检索

为了探明磷灰石在微生物浸出黄铜矿体系中的溶出特性及其对黄铜矿浸出的影响,选择粒径小于43μm的磷灰石与粒径小于74μm的黄铜矿以及At.f菌组成矿浆浸出体系,考察不同At.f菌接种量对于磷灰石溶出速率的影响及对黄铜矿浸出效果的影响。结果表明:浸出体系中含低浓度PO 43?可以提高铜的浸出效率;当At.f菌接种量为5%时,微生物浸出体系中磷灰石溶出的PO 43?浓度最小,为0.62 mg/L,此时黄铜矿的最终浸出率最高,达到57.4%,比PO 43?溶液浓度最高时体系的铜浸出率提高近30%。通过对微生物浸出前、后的浸渣进行扫描电镜、能谱分析和XRD分析发现,浸出后磷灰石表面浸蚀不明显,而黄铜矿表面浸蚀明显,同时浸渣中有新物质铵黄铁矾生成;磷灰石对于新生成的沉淀有一定的吸附作用,而且溶出较低浓度的PO 43?体系能提高黄铜矿的浸出。

To make sure the dissolution characteristics of apatite in the chalcopyrite bioleaching system and the influence on the chalcopyrite leaching efficiency, the apatite with particle size of less than 43 μm, chalcopyrite with 74 μm and Acidithiobacillus ferrooxidans (At.f) were used to prepare a bioleaching system. And the influence of different At.f inoculation amount on the apatite dissolution rate and chalcopyrite leaching effect were studied. The results show that chalcopyrite leaching efficiency can be improved when there exists PO 4 3? with low concentration in the bioleaching system. And PO43? reaches the lowest concentration of 0.62 mg/L in the bioleaching system when the At.f inoculation amount is 5%, and the final chalcopyrite leaching rate reaches the highest of 57.4%, which is 30%higher than that in the bioleaching system with the highest concentration of PO43?. Scanning electron microscope (SEM), energy dispersive spectroscope and X-ray diffraction (XRD) analyses before and after the bioleaching show that, there is not any obvious erosion on the apatite surface after leaching, while obvious erosion exists on the chalcopyrite surface and new compound ammoniojarosite generates in the leaching residue. And the precipitates newly generated can be absorbed by apatite, low concentration PO 4 3?in the bioleaching system can improve the leaching of chalcopyrite.

参考文献

[1] BRIERLEY J A;BRIERLEY C L .Present and future commercial applications of biohydrometallurgy[J].HYDROMETALLURGY,2001,59:233-236.
[2] H.R. Watling .The bioleaching of sulphide minerals with emphasis on copper sulphides - A review[J].Hydrometallurgy,2006(1/2):81-108.
[3] 曾涛.投资海外铜矿资源的经验和教训[J].中国金属通报,2009(25):32-33.
[4] 郑永兴,文书明,刘健,邓永帅.难处理氧化铜矿强化浸出的研究概况[J].矿产综合利用,2011(02):33-36,40.
[5] EDGARDO R D;WOLFGANG S.Microbial processing of metal sulfides[M].Netherland:Springer Verlag,2007:1-33.
[6] XingQing Zhao;RuCheng Wang;XianCai Lu.Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidans[J].Minerals Engineering,2013:184-192.
[7] DENISE B;HEIDI L;PATRICIA H S;OSWALDO G Jr ASSIS V B JAAKKO A P OLLI H T .Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors[J].HYDROMETALLURGY,2013,138(06):1-13.
[8] Yingbo Dong;Hai Lin;Xiaofang Xu;Yue Zhang;Yuejiao Gao;Shanshan Zhou.Comparative study on the bioleaching, biosorption and passivation of copper sulfide minerals[J].International Biodeterioration & Biodegradation,2013:29-34.
[9] 莫晓兰,林海,傅开彬,董颖博,徐承焱.绢云母对黄铜矿微生物浸出的影响[J].中国有色金属学报(英文版),2012(05):1475-1481.
[10] Yingbo B. Dong;Hai Lin;Shanshan Zhou.Effects of quartz addition on chalcopyrite bioleaching in shaking flasks[J].Minerals Engineering,2013:177-179.
[11] 余润兰,刘晶,陈安,钟代立,李乾,覃文庆,邱冠周,顾帼华.嗜酸氧化亚铁硫杆菌(ATCC 23270)浸出黄铜矿过程中的EPS、Cu2+和Fe3+的相互作用机制[J].中国有色金属学报(英文版),2013(01):231-236.
[12] 罗仙平,邱廷省,胡玖林,郝志伟,成先雄.综合回收拉拉铜矿尾矿中磷资源的试验研究[J].矿冶,2002(z1):247-249,240.
[13] 张成桂 .嗜酸氧化亚铁硫杆菌适应与活化元素硫的分子机制研究[D].中南大学,2008.
[14] HE Zhi-guo;ZHONG Hui;HU Yue-hua;XIAO Sheng-mu LIU Jiar-she XU Jin LI Gui-yuen .Analysis of differential expressed proteins of Acidithiobacillus ferrooxidans grown under phosphate starvation[J].Journal of Biochemistry and Molecular Biology,2005,38:545-549.
[15] 董颖博 .含铜尾矿微生物浸矿菌种的选育和浸出规律研究[D].北京:北京科技大学,2011.
[16] Yingbo Dong;Hai Lin;Han Wang;Xiaolan Mo;Kaibin Fu;Hongwei Wen .Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings[J].Minerals Engineering,2011(8):870-875.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%