采用经典Galerkin有限元法和Newton-Raphson迭代法,配合适当的边界条件实现了微流道中牛顿流体和剪切变稀流体前沿喷泉流动的数值仿真.结果表明:两种流体在喷泉流动区域的速度压力分布规律相同,在微尺度条件下流体的本构特性对喷泉流动的形式影响较小,仅是剪切变稀流体的喷泉区域略大于牛顿流体.在微尺度条件下,喷泉效应仍然是一种纯流体动力学现象.表面张力对微流体前沿喷泉流动区域的速度压力分布影响很小,但其在流体前沿自由表面上产生的切向应力使流体前沿的形状产生较大变形,与理想的半圆形相差较远.
参考文献
[1] | Mavridis H;Hrymak A N;Vlachopoulos J .[J].Polymer Engineering and Science,1986,26(07):449-454. |
[2] | Jin X S .[J].Polymer Engineering and Science,1993,33(19):1238-1243. |
[3] | Lee HS .Finite element analysis for the flow characteristics along the thickness direction in injection molding[J].Polymer engineering and science,1997(3):559-567. |
[4] | Hung C F;Shen Y K .[J].International Journal of Heat and Mass Transfer,1995,22(06):791-802. |
[5] | 张华,李德群,陈兴.塑料注射成型熔体前沿的流动模拟[J].塑料科技,1998(06):50-52. |
[6] | 梁志明,周持兴,俞炜,王刚,温绍国.聚合物熔体的非等温平板收缩流动的数值模拟[J].高分子材料科学与工程,2003(01):15-19. |
[7] | 冯良为,岑运福,徐智,杨军.充模过程熔接缝形成的数值模拟[J].塑料工业,2001(05):19-21. |
[8] | Kim DS.;Lee KC.;Kwon TH.;Lee SS. .Micro-channel filling flow considering surface tension effect[J].Journal of Micromechanics and Microengineering,2002(3):236-246. |
[9] | Yao DG.;Kim B. .Simulation of the filling process in micro channels for polymeric materials[J].Journal of Micromechanics and Microengineering,2002(5):604-610. |
[10] | Piotter V;Kplewa K;Ruprecht R.[J].Microsystem Technologies,2002(08):387-390. |
[11] | Ruprcht R;Gietzelt T;Muller K.[J].Microsystem Technologies,2002(08):351-358. |
[12] | Picelin E;Coupez T .[J].Computer Methods in Applied Mechanics and Engineering,1998,163(08):359-371. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%