采用HDDR及氮化工艺制备了Sm2Fe16.5Ti0.5Ny粉末.铸态Sm2Fe16.5Ti0.5合金存在择优取向,Sm2(Fe,Ti)17主相的214衍射峰增强.均匀化退火后,只有约0.6%的α-Fe(Ti)相与主相Sm2(Fe,Ti)17共存.经不同循环的HDDR工艺处理后,物相组成不发生变化,但α-Fe(Ti)相含量增加.HDDR工艺有助于获得细晶结构,提高磁粉的矫顽力.HDDR处理的合金的氮化由初期的Sm-Fe-Ti合金与氮快速反应阶段及后期氮在合金中的均匀化扩散阶段组成.随着氮化时间的延长,富铁相含量增加.氮化物中Sm2(Fe,Ti)17Ny主相的晶格膨胀行为由HDDR与氮化工艺共同决定.在500℃氮化2h后,796kA/m最大外场下得到的最大矫顽力为164.9kA/m,氮化12h时后得到最大剩磁45.7Am2/kg.
Sm2 Fe16.5Ti0.5Ny powder is synthesized by HDDR process and nitrogenation. As-cast Sm2 Fe16.5Ti0.5 alloy behaves preferred direction, which is the 214 diffraction of Sm2 (Fe,Ti)17. In the as-homogenized ingots, main phase Sm2 (Fe,Ti)17 co-exists with only about 0.6%α-Fe(Ti). After treated by different cycles of HDDR process, the phase compositions aren't changed any more, but the content of α-Fe(Ti) is increased. Moreover, HDDR process contributes to the fine-grained microstructure and improves the coercivity. The nitrogenation process mainly includes two stages, one is fast reaction between N and Sm-Fe-Ti phase,another is lengthy homogenized diffusion of N. The content of Fe-rich phases is increased with increasing nitrogenation time.The lattice expansion of Sm2(Fe,Ti)17Ny nitrides is controlled by HDDR and nitrogenation processes together. The optimal eoercivity of 164. 9kA/m is obtained at nitrogenation 2h, and the excellent remanence of 45.7Am2/kg is presented at nitrogenation12h.
参考文献
[1] | CoeyJ MD;Smith P AI .[J].Journal of Magnetism and Magnetic Materials,1999,200(1-3):405-424. |
[2] | Cao L Z;Shen J;Chen N X .[J].Journal of Alloys and Compounds,2002,336:18-28. |
[3] | Kubis M.;Gutfleisch O.;Gebel B.;Muller KH.;Schultz L. Harris IR.;Brown DN. .Effect of small Zr additions on the microstructure of Sm2Fe17[J].IEEE Transactions on Magnetics,2000(5 Pt.1):3303-3305. |
[4] | Wang Wenquan;Wang Jianli;Li Weixing et al.[J].Journal of Alloys and Compounds,2003,358:12-16. |
[5] | Cui Chunxiang;Sun Jibing .[J].Physica B Condensed Matter,2004,351:151-157. |
[6] | Kaszuwara W;Leonowicz M;Kozubowski J A .[J].Materials Letters,2000,42:383-386. |
[7] | Kawashima F.;Sakurada S. .Magnetic properties and microstructure of rapidly quenched SmZrFeCoN magnets[J].IEEE Transactions on Magnetics,1999(5):3289-3291. |
[8] | Yoshizawa S.;Ishikawa T. .Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/ anisotropic magnet using reduction and diffusion method[J].IEEE Transactions on Magnetics,1999(5):3340-3342. |
[9] | Teresiak A;Gutfleisch O;Mattern N;et at .[J].Journal of Alloys and Compounds,2002,346:235-243. |
[10] | Zinkevich M;Mattern N;Handstein A et al.[J].Journal of Alloys and Compounds,2002,339:118-139. |
[11] | Kubis M.;Mueller K.-H.;Harris I.R.;Schultz L.;Gutfleisch O. .Microstructure and HDDR-processing of as-cast Sm10.5Fe88.5Zr1.0[J].Journal of Magnetism and Magnetic Materials,1999(0):297-298. |
[12] | 孙继兵,崔春翔,张颖,王如,吴瑞国,梁志梅.Sm12.7Fe86.3Nb1合金的氢处理[J].中国有色金属学报,2004(09):1590-1598. |
[13] | Chen Nan-xian;Hao Shi-qiang;Wu Yu;Shen Jiang .Phase stability and site preference of Sm(Fe,T)_(12)[J].Journal of Magnetism and Magnetic Materials,2001(3):169-180. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%