欢迎登录材料期刊网

材料期刊网

高级检索

以Ti(OC4H9)4、Li(CH3COO)·2H2O、Al(NO3)·9H2O和NH4H2PO4为原料,采用溶胶?凝胶法合成Li1.3Al0.3Ti1.7(PO4)3粉体,并研究热处理温度对粉体结构的影响.通过X射线衍射仪(XRD)、扫描电镜(SEM)和电化学阻抗谱(EIS)对制备粉体的结构与性能进行表征.结果表明:溶胶凝胶法可合成纯相LATP粉体,降低热处理温度,且粉体结晶性良好,粒径小于1μm,室温下电导率为1.32×10?3 S/cm,673 K时电导率达到8.94×10?2 S/cm,473~673 K下活化能为31.55 kJ/mol.

@@@@Li1.3Al0.3Ti1.7(PO4)3 powders were prepared by sol-gel method using Ti(OC4H9)4, Li(CH3COO)·2H2O, Al(NO3)·9 H2O and NH4H2PO4 as starting materials. The influence of synthesis temperature on the structure of Li1.3Al0.3Ti1.7(PO4)3 powders was studied. The structure and the characterization of the powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM)and electrochemical impedance spectroscopy (EIS). The results show that pure Li1.3Al0.3Ti1.7(PO4)3 powders with good crystallinity and particle size below 1 μm are obtained by sol-gel method, and the heating temperature decreases. The lithium ion conductivity is 1.32×10?3 S/cm at room temperature, while it reaches its maximum 8.94×10?2 S/cm at 673 K, and its activation energy is 31.55 kJ/mol at the temperature range of 473?673 K

参考文献

[1] 朱永明,任雪峰,李宁.无机固态锂离子电解质的研究进展[J].化学通报(印刷版),2010(12):1073-1079.
[2] Kobayashi, E.;Plashnitsa, L.S.;Doi, T.;Okada, S.;Yamaki, J.-I. .Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes[J].Electrochemistry communications,2010(7):894-896.
[3] ALPEN U V;RABENAU A;TALAT G H .Ionic-conductivity in Li3N single crystals[J].Applied Physics Letters,1977,30(12):621-623.
[4] KENNESY J H;ZHANG Z M .Improved stability for the SiS2-P2S5-Li2S-LiI glass system[J].Solid State Ionicis,1988,28(30):726-728.
[5] 郑子山,张中太,唐子龙,沈万慈.锂无机固体电解质[J].化学进展,2003(02):101-106.
[6] AONO H;SUGIMOTO E;SADAOKA Y;SADAOKA Y IMANAKA N ADACHI G Y .Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J].Electrochemistry Society,1990,137:1023-1027.
[7] Johnson, P.;Sammes, N.;Imanishi, N.;Takeda, Y.;Yamamoto, O. .Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor[J].Solid state ionics,2011(1):326-329.
[8] XU Xiao-xiong;WEN Zhao-yin;WU Xiang-wei;YANG Xue-lin, GU Zhong-hua .Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O(x=0.0?0.20) with good electrical and electrochemical properties[J][J].Journal of the American Ceramic Society,2007,99(09):2802-2806.
[9] AONO H;SUGIMOTO E;SADAOKA Y;SADAOKA Y IMANAKA N ADACHI G Y .The Electrical Properties of Ceramic Electrolytes for LiMxTi2?x(PO4)3+YLi2O,M=Ge,Sn,Hf,and Zr systems[J].Eletrochemical Society,1993,140:1827-1833.
[10] Fu J. .SUPERIONIC CONDUCTIVITY OF GLASS-CERAMICS IN THE SYSTEM LI2O-AL2O3-TIO2-P2O5[J].Solid state ionics,1997(3/4):195-200.
[11] 张保柱,马琦,张志强,张智敏.锂快离子导体研究进展与展望[J].应用化工,2005(05):265-267,279.
[12] 庞明杰 .Li<,1.3>Al<,0.3>Ti<,1.7>(PO<,4>)<,3>的离子导电及在PEO-LiClO<,4>体系中的填料效应[D].浙江大学,2006.
[13] 张玉荣,王文继.锂快离子导体Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12系统的研究[J].功能材料,2001(05):510-511.
[14] 张玉荣,王文继.锂快离子导体Li{1+2x+yAlxYbyTi2-x-ySixP3-xO12系统的研究[J].无机材料学报,2001(01):117-121.
[15] 庞明杰,王严杰,曹涯路,王利,徐灿阳,潘颐.锂快离子导体Li3-2x(Al1-xTix)2(PO4)3的合成与表征[J].材料科学与工程学报,2005(05):545-548.
[16] 张爱众.锂快离子导体Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12系统的合成与表征[J].晋中学院学报,2007(03):27-29.
[17] 郭小伟;贾晓林;户赫龙 .溶胶?凝胶微波加热合成LiTi2(PO4)3超细粉[J].材料导报,2007,21(11):68-70.
[18] 户赫龙,毋雪梅,鲁占灵,贾晓林.溶胶-凝胶、微波加热合成Li1.3Al0.3Ti1.7(PO4)3粉体[J].人工晶体学报,2009(04):948-951.
[19] Xian Ming Wu;Xin Hai Li;Shao Wei Wang;Zhuo Wang;Yun He Zhang;Ming Fei Xu;Ze Qiang He .Preparation and characterization of lithium-ion-conductive Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3 thin films by the solution deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2003(1/2):103-107.
[20] 吴显明,肖卓炳,麻明友,何则强,许名飞,李新海.Li1.3Al0.3Ti1.7(PO4)3的溶胶-凝胶法制备及其性质研究[J].功能材料,2005(05):701-703.
[21] Johnson, P.;Sammes, N.;Imanishi, N.;Takeda, Y.;Yamamoto, O. .Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor[J].Solid state ionics,2011(1):326-329.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%