欢迎登录材料期刊网

材料期刊网

高级检索

对于无缝钢管穿孔生产,穿孔效率和穿孔能耗是衡量生产的两个重要指标.但由于其影响因素复杂,难以建立机制模型,放难以实现对其模型的综合优化.为实现穿孔效率和穿孔能耗的综合优化,根据穿孔生产工艺将穿孔过程分成3个部分,提出了基于均值子时段MICR方法的穿孔效率和穿孔能耗的预报模型.在预报模型的基础上,采用遗传算法对各段工艺参数的平均值进行寻优,得到穿孔效率和穿孔能耗综合优化结果.仿真和试验结果表明,基于穿孔效率和穿孔能耗预报模型的优化方法可有效取得最优工艺参数,为穿孔效率的提高和穿孔能耗的降低提供依据.

参考文献

[1] Cavaliere M;Goldschmit M;Dvorkin E .Finite Element Analysis of Steel Rolling Processes[J].Computers & Structures,2001,79(02):2075.
[2] 李连诗.钢管塑性变形原理[M].北京:冶金工业出版社,1985
[3] 双远华;李国祯.钢管斜轧理论及生产过程的数值模拟[M].北京:冶金工业出版社,2001
[4] 杨效勇;刘烨.建立穿孔效率的数学模型[J].钢管,1995(05):30.
[5] 庞玉华;周忠民;成友义 .顶头形状对穿孔毛管壁厚均匀性及能耗影响的研究[J].钢管,1991,15(05):48.
[6] Kitagawa W;Kimura Y;Takeshita T .A Study on Embedding Genetic Algorithm to Three-Dimensional Finite Element Method by Using Shell Script[J].IEEE Transactions on Industry Applications,2012,132(02):227.
[7] Kitagawa Wataru;Kimura Yoshihiro;Takeshita Takaharu .Industrial Experiences With Multivariate Statistical Analysis of Batch Process Data[J].IEEE Transactions on Industry Applications,2012,132(02):227.
[8] Shifei Ding;Li Xu;Chunyang Su;Fengxiang Jin .An optimizing method of RBF neural network based on genetic algorithm[J].Neural computing & applications,2012(2):333-336.
[9] XIAO Dong,WANG Ji-chun,PAN Xiao-li,MAO Zhi-zhong.Quality prediction and control of tube hollow[J].中南大学学报(英文版),2011(03):767-772.
[10] 肖冬,潘孝礼,毛志忠,贾明兴,王福利.基于步进子时段MICR方法的毛管质量预报[J].仪器仪表学报,2007(12):2190-2196.
[11] ZHANG Jian;ZHOU Ji-liu;HE Kun et al.An Improved Quantum Genetic Algorithm for Image Segmentation[J].Journal of Computer Information Systems,2011,11(07):3979.
[12] Goezde Bakirli;Derya Birant;Alp Kut .An incremental genetic algorithm for classification and sensitivity analysis of its parameters[J].Expert Systems with Application,2011(3):2609-2620.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%