利用Raman激光光谱,XRD,TEM,SEM和UV-Vis等手段研究了TiO2超微粒子的量子尺寸效应与光吸收特性.结果发现:由Ti(OBu)4在较低pH值的水解条件下制得的TiO2溶胶粒径为5~10 nm;随着热处理温度的升高,TiO2微粒的粒径增大,经473~673 K热处理得到的TiO2超微粒子粒径为10~20 nm,呈不规整的锐钛矿型结构.TiO2的拉曼峰随热处理温度升高而发生红移,表现出量子尺寸效应.热处理温度升高到873 K时,粒径增大到30 nm左右,呈锐钛矿型与金红石型混晶结构.温度进一步升高时,金红石相增多.由于金红石型TiO2微粒带隙减小,也使拉曼峰出现红移.当TiO2微粒的尺寸明显增大,超出量子尺寸效应范围(20 nm)时,其拉曼峰不发生位移.锐钛矿型TiO2超微粒子在紫外光区有较好的光吸收性能,并有较高的光催化活性.在较高pH值的水解条件下得到的多孔大颗粒TiO2,对紫外光有散射作用,有效光吸收及光催化降解活性均降低.
参考文献
[1] | Fujishima A;Honda K .[J].Nature,1972,238(5358):37. |
[2] | Fox M A;Dulay M T .[J].Chemical Reviews,1993,93(01):314. |
[3] | Matthews R W .[J].Journal of Catalysis,1988,113(02):549. |
[4] | Draper R B;Fox M A .[J].Langmuir,1990,6(08):1396. |
[5] | Turchi C S;Ollis D F .[J].Journal of Catalysis,1989,119(02):483. |
[6] | Spanhel L;Haase M;Weller H et al.[J].Journal of the American Chemical Society,1987,109(19):5649. |
[7] | Sato S;White J M .[J].Chemical Physics Letters,1980,72(01):83. |
[8] | Butler E C;Davis A P .[J].Journal of Photochemistry and Photobiology A:Chemistry,1993,70(03):273. |
[9] | Fujihira M;Satoh Y;Osa T .[J].Bulletin of the Chemical Society of Japan,1982,55(03):666. |
[10] | Sclafani A;Mozzanega M N;Pichat P .[J].Journal of Photochemistry and Photobiology A:Chemistry,1991,59(02):181. |
[11] | Koch U;Fojtik A;Weller H et al.[J].Chemical Physics Letters,1985,122(05):507. |
[12] | Wang Y;Suna A;Mahler W et al.[J].Journal of Chemical Physics,1987,87(12):7315. |
[13] | Ayyub P;Multaini M;Barma M et al.[J].Journal of Physics C:Solid State Physics,1988,21(11):2229. |
[14] | 孙奉玉;吴鸣;李文钊 等.[J].催化学报,1998,19(03):229. |
[15] | Kelly S;Pollak F H;Tomkiewicz M .[J].Journal of Physical Chemistry B,1997,101(14):2730. |
[16] | 余锡宾;吴虹 .[J].无机材料学报,1996,11(04):703. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%