欢迎登录材料期刊网

材料期刊网

高级检索

本文利用溶剂灌制/粒子沥滤的方法将具有较强吸附性能的活性碳纤维(activated carbon fiber,ACF)掺杂于聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)制备了一种新型ACF/PLGA骨组织工程复合支架。论文对比研究了纯PLGA支架以及两种ACF/PLGA支架(ACF含量为2.75%,8.26%)的结构和性能。SEM研究发现三者都具有较高的孔隙度,分别为73.5340%、75.1214%和79.8216%,且孔隙度随着ACF含量的增加逐渐增大;压汞法测得三者的孔径分布基本在50~250μm之间;研究其亲水性发现,其表面接触角随ACF含量增加逐渐减小,吸水率则逐渐增大。进一步研究发现在三种支架上种植小鼠成纤维细胞(L929),一天后细胞都较好粘附在支架上;ACF含量为8.26%的复合支架移植到小白鼠皮下组织,一月后HE切片显示支架周围组织的免疫排斥反应较小。掺杂ACF的PLGA复合支架除了具有良好的细胞粘附效果和组织相容性,相对于纯PLGA支架,还具有良好的孔径分布和亲水性,具有潜在的应用价值。

Novel ACF/PLGA bone tissue engineering composite scaffolds were prepared by solvent casting/particulate leaching method,within which activated carbon fibers(ACF) with high adsorbility were incorporated into poly(lactic-co-glycolic acid)(PLGA).Structure and properties of the scaffolds were studied by comparing monotonic PLGA and two ACF/PLGA scaffolds(mass fractions of ACF are 2.75% and 8.26%,respectively).SEM showed that the three scaffolds were of high porosity,approximately increasing with increasing content of ACF from 73.5340%,75.1214% to 79.8216%.The mercury injection method revealed that pore size distributions of all scaffolds were between 50-250μm.The hydrophilicity investigation implied that the contact angle decreased and the water absorption increased when the content of ACF increased.SEM observed that L929 fibroblast adhered well on the scaffolds after mouse fibroblast(L929) was cultured on the scaffolds for 1 day.When the scaffolds have implanted to subcutaneous tissue of mice for a month,HE sections showed that tissue around scaffolds were immunoreactive at low level.Compared with PLGA,ACF/PLGA bone tissue engineering scaffolds possessed better pore size distribution,hydrophilicity.good cell adhesion and histocompatibility,indicating a potential application value.

参考文献

[1] Fialkov JA;Holy CE;Shoichet MS;Davies JE .In vivo bone engineering in a rabbit femur.[J].The Journal of craniofacial surgery,2003(3):324-332.
[2] Chakravarthi SS;Robinson DH .Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles.[J].International Journal of Pharmaceutics,2011(1/2):111-120.
[3] Moncy V.Jose;Vinoy Thomas;Kalonda T.Johnson et al.Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engincering[J].Acta Biomaterialia,2009,5(01):305-315.
[4] Jun Jae Lee;Sang-Gil Lee;Jong Chul Park et al.Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering[J].Current Applied Physics,2007,7(01):37-40.
[5] Sahoo S;Toh SL;Goh JC .A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.[J].Biomaterials,2010(11):2990-2998.
[6] Owen I.Corrigan;Xue Li .Quantifying drug reiease from PLGA nanopartieulates[J].European Journal of Pharmaceutical Sciences,2009,37(03):477-485.
[7] 赵莉,何晨光,高永娟,崔磊,曹谊林.PLGA的不同组成对支架材料性能的影响研究[J].中国生物工程杂志,2008(05):22-28.
[8] A.R.Boccaccini;J.J.Blaker;V.Maquet;R.M.Day,R.Jerome .Preparation and characterisation of poly(lactide-co- glycolide)(PLGA)and PLGA/Bioglass composite tubular foam scaffolds for tissue engineering applications[J].Materials Science and Engineering,2005,25(01):23-31.
[9] 贾骏,段嫄嫄,陈亚芍,周建学,张少锋.胶原改性PLGA电纺纤维的制备及其细胞相容性研究[J].临床口腔医学杂志,2007(06):323-325.
[10] Rui Chen;Stephen J.Curran;Judith M.Curran;John A.Hunt .The use of poly(L-lactide)and RGD modified mierospheres as cell carriers in a flow intermittency bioreactor for tissue engineering eartilage[J].Biomaterials,2006,27(25):4453-4456.
[11] Susan Liao;Wei Wang;Motohiro Uo et al.A three-layered nano-cabonated hydroxyapatite/collagen/ PL GA composite membrane for guided tissue regeneration[J].Biomaterials,2005,26(36):7564-7571.
[12] 庞龙,胡蕴玉,颜永年,刘利,熊卓,吕荣,王军.杂化改性后快速成型支架对骨缺损修复的实验研究[J].创伤外科杂志,2007(03):257-260.
[13] Ryu GH;Yang WS;Roh HW;Lee IS;Kim JK;Lee GH;Lee DH;Park BJ;Lee MS;Park JC .Plasma surface modification of poly(D,L-lactic-co-glycolic acid)(65/35) film for tissue engineering[J].Surface & Coatings Technology,2005(1/3):60-64.
[14] Robin A.Quirk;Weng C.Chan;Martyn C Davies et al.Poly(L-lysine)-GRGDS as a biomimetic surface modifier of poly(lactic acid)[J].Biomaterials,2001,22(08):865-872.
[15] 刘军;朱庆三;姜志刚;吴敏飞 郭永刚 .碳纤维增强聚醚醚酮和钛合金的细胞毒性比较[J].中国实验诊学,2009,13(02):149-152.
[16] Carranza-Bencano A;Armas-Padron JR;Gili-Miner M;Lozano MA .Carbon fiber implants in osteochondral defects of the rabbit patella.[J].Biomaterials,2000(21):2171-2176.
[17] Susan L.Ishaug-Riley;Genevieve M.Crane-Kruger;Michael J.Yaszemski;Antonios G.Mikos .Three dimensional culture of rat calvarial osteohlast in porous biodegradable polymers[J].Biomaterials,1998,19(15):1405-1412.
[18] Tithi Dutta Roy;Joshua L. Simon;John L. Ricci .Performance of degradable composite bone repair products made via three-dimensional fabrication techniques[J].Journal of biomedical materials research, Part B. Applied biomaterials,2003(2):283-291.
[19] 莫湘涛,秦廷武,杨志明.骨组织工程支架材料的降解和生物力学特性[J].医用生物力学,2004(01):56-60.
[20] Huang W;Shi X;Ren L;Du C;Wang Y .PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.[J].Biomaterials,2010(15):4278-4285.
[21] Rossella Dorati;Claudia Colonna;Ida Genta;Tiziana Modena Bice Conti .Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffoids[J].Polymer Degradation and Stability,2010,95(04):694-701.
[22] Z.X.Meng;Y.S.Wang;L.Li;Y.F.Zheng .Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering[J].Materials Science and Engineering,2010,84(01):97-102.
[23] Huang, WB;Carlsen, B;Wulur, I;Rudkin, G;Ishida, K;Wu, B;Yamaguchi, DT;Miller, TA .BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold[J].Experimental Cell Research,2004(2):325-334.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%