欢迎登录材料期刊网

材料期刊网

高级检索

通过使用高能量密度的电子束高速扫描预先涂有Si粉的TiAl合金表面, "原位"制得了以高硬度金属间化合物Ti5Si3为增强相、以TiAl、 Ti3Al为基体的复相合金表面改性层. 利用光学显微镜、电子探针、能谱仪及X射线衍射仪分析和研究了电子束表面改性层的显微组织结构; 同时测试了沿改性层深度方向的硬度分布. 结果表明: 表面改性层由TiAl、 Ti3Al、 Ti5Si3相组成, Ti5Si3相的形态及分布沿层深方向呈现梯度变化, 在表层为粗大的六棱柱状结构, 沿改性层向内, 其中、下部由于冷却速度相对较快, 硬质相的形态及分布趋于细小、密集; 改性层与基体间没有明显的界面, 为完全的冶金结合; 改性层具有较高的硬度, 显微硬度最高达到895, 约为基体的3倍.

参考文献

[1] J.Yamaguchi;H.Inui .High-temperature structural intermetallics[J].Acta materialia,2000(1):307-322.
[2] Dimiduk DM .Gamma titanium aluminide alloys--an assessment within the competition of aerospace structural materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(2):281-288.
[3] Noda T;Okabe M;Isobe S .Hard surfacing of TiAl intermetallic compound by plasma carburization[J].Materials Science and Engineering A,1996,213(02):157-161.
[4] Wang Y;Qian Z;Li X Y et al.Sliding wear properties of TiAl alloys with/without coatings[J].Surface and Coatings Technology,1997,91(01):37-42.
[5] 刘秀波,于利根,王华明.γ-TiAl金属间化合物合金激光表面合金化改性[J].稀有金属材料与工程,2001(03):224-227.
[6] 刘常升,陈岁元,尚丽娟,马春雨,闻平,才庆魁.γ-TiAl合金激光表面气相氮化层的组织与性能[J].中国激光,2002(03):277-280.
[7] 刘秀波,于利根,王华明.TiAl合金激光表面合金化涂层的组织与耐磨性[J].中国有色金属学报,2000(06):785.
[8] 何秀丽,王华明.工艺参数对TiAl合金激光表面合金化改性层组织与耐磨性的影响[J].中国有色金属学报,2000(06):790.
[9] Abe N;Morimoto J;Tomie M et al.Formation of WC-Co layers by an electron beam cladding method and evaluation of the layer properties[J].Vacuum,2000,59(01):373-380.
[10] Morimoto J;Abe N;Kuriyama F et al.Formation of a Cr3C2/Ni-Cr alloy layer by an electron beam cladding method and evaluation of the layer properties[J].Vacuum,2001,62(02):203-210.
[11] Jun Cheol Oh;Dong-Kyun Choo;Sunghak Lee .Microstructural modification and hardness improvement of titanium-base surface alloyed materials fabricated by high energy electron beam irradiation[J].Surface & Coatings Technology,2000(1):76-85.
[12] Lee J.;Euh K.;Oh JC.;Lee S. .Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):251-259.
[13] Oh JC.;Yun E.;Golkovski MG.;Lee S. .Improvement of hardness and wear resistance in SiC/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):98-108.
[14] Wu G Q;Huang Z;Li Z F et al.TEM observations of grain refinement of laser melted γ-TiAl based alloy[J].Materials Letters,2003,57(24):3810-3814.
[15] Kim Y W .Ordered intermetallic alloys (part Ⅲ): Gamma titanium aluminides[J].Journal of Metals,1994,46(07):30-35.
[16] Hao S M;Wu W T .Mechanism and kinetics of phase transformation in two-phase TiAl-based alloys[J].Journal of Materials Science and Technology,1994,10(03):170-174.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%