采用普通液压机及新型的模压半炭化成型工艺,在大气环境下制备出了高密度、低成本、应用广的三种焦炭(冶金焦、沥青焦Ⅰ和沥青焦Ⅱ)颗粒增强的沥青基炭复合材料(简称PCCs).通过对PCCs材料先后进行快速焙烧处理,沥青浸渍-炭化致密化处理和高温石墨化(2373K)处理,制得了PCC材料的焙烧样品、致密化样品和石墨化样品.通过力学性能试验,SEM和XRD等方法,研究了增强体焦炭颗粒的种类对沥青基炭复合材料的体积密度和抗压强度的影响.结果表明:PCCs材料抗压强度的高低,除了与其体积密度相关外,还与其所采用的增强体焦炭颗粒的耐压强度、微观结构和表面状态有密切的关系.焦炭颗粒的耐压强度愈高、表面越粗糙、开孔孔隙越多,其对沥青基炭复合材料的增强作用也就越显著.无论PCCs材料是焙烧样品、致密化样品、还是石墨化样品,用磨碎冶金焦制备的PCCs材料的三种样品的抗压强度最大,用沥青焦Ⅱ制备的PCCs材料的次之,用沥青焦Ⅰ制备的CRPCC材料的最小.粒状增强体的种类对CRPCC材料的力学性能不仅具有非常重要的影响,而且其强度也具有一定的遗传性.
Pitch-based carbon composites (PCCs) reinforced by three granular cokes, metallurgical coke, No. 1 pitch coke and No.2 pitch coke, were prepared under an air atmosphere using a hydraulic press and new mold pressing and semi-carbonization shaping technology. The as-fabricated PCCs were treated in turn by quick baking, one-time densification and graphitization at 2373K, and three corresponding samples were obtained. The effect of the type of granular coke used as reinforcement on the volume density and mechanical properties of the PCCs was studied by a materials testing machine, SEM, and XRD. Results indicate that the compressive strength of the PCCs is closely related to the surface morphology, microstructure, and compressive strength of the granular cokes. A higher compressive strength, coarser surface and more open porosity of granular cokes induce higher reinforcement to the composites. The PCCs can be obtained through baking, densification, and graphitization. The compressive strength of the PCCs fabricated using metallurgical cokes is the highest with those from No.2 pitch coke in the middle and those from No. 1 pitch coke the lowest. The granular cokes not only greatly influence the mechanical properties of the PCCs, but also, to some extent, pass their original strength to their descendants.
参考文献
[1] | Blanco C.;Bermejo J.;Menedez R.;Santamaria R. .Pitch-based carbon composites with granular reinforcements for frictional applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(7):1043-1051. |
[2] | Schmidt J.;Brehler KP.;Arndt J.;Moergenthaler KD. .High-strength graphites for carbon piston applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(7/8):1079-1084. |
[3] | 郭领军,李贺军,薛晖,李克智,付业伟.短切炭纤维增强沥青基C/C复合材料的力学性能[J].新型炭材料,2006(01):36-42. |
[4] | 郭领军,李贺军,李克智,石振海.焦炭颗粒的粒度分布及其微观结构研究[J].煤炭转化,2003(03):54-57. |
[5] | 郭领军,李贺军,张秀莲.模压压力对焦炭粉体堆积密度影响的试验研究[J].炭素技术,2003(02):1-4. |
[6] | 郭领军,李贺军,付业伟,熊信柏.工艺因素影响焦炭颗粒耐压强度的试验研究[J].炭素技术,2002(05):5-9. |
[7] | 谢有赞.炭石墨材料工艺[M].长沙:湖南大学出版社,1988:218-233. |
[8] | 李圣华.石墨电极生产[M].北京:冶金工业出版社,1997:42-45,244-247. |
[9] | GB 8743-2005.GB 8743-2005.铝电解用阴极炭块的质量标准[S].,2005. |
[10] | YB/T 2806-2001.YB/T 2806-2001.炭电阻柱质量指标[S].,2001. |
[11] | YB/T 2804-2001.YB/T 2804-2001.普通高炉炭块的质量[S].,2001. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%