欢迎登录材料期刊网

材料期刊网

高级检索

以准三维针刺炭纤维毡为预制体,采用化学气相渗透工艺在预制体中炭纤维/基体炭之间制备C-SiC-TaC-c复合界面,利用树脂浸渍一炭化工艺对材料进一步增密,获得含C-SiC-TaC-C界面的C/C复合材料。研究了1400-2500℃不同温度热处理前后复合材料的微观结构和力学性能。结果表明:热处理前,SiC-TaC界面为管状结构,复合材料的抗弯强度为241.6MPa,以脆性断裂为主;经1400-1800℃热处理后,TaC界面破坏呈颗粒状,复合材料的平均抗弯强度下降到238.9-226.1MPa,其断裂方式不变,但断裂位移由0.7mm增至1.0mm;经2000-2500℃热处理后,SiC、TaC界面均受到破坏,复合材料平均抗弯强度急剧下降至158.7-131.8MPa,断裂方式由脆性断裂转变为假塑性断裂。

C-SiC-TaC-C multi-interlayers were introduced in the carbon fiber/carbon matrix interface in quasi 3D needled carbon felt by chemical vapor infiltration, the modified C/C porous performs were densified by impregnation- carbonization processes to obtain C/C composites with C-SiC-TaC-C multi- interlayers. The microstructure and mechanical properties were studied after heat treatment (HTT) at different temperatures of 1400-2500℃. The results show that the SiC- TaC interlayers have a tubular structure before HTT; while the average flexural strength of the as-prepared composites is 241.6 MPa with a brittle fracture. After HTT at 1400-1800℃, TaC interlayer is damaged to granular structure; As a result, the flexural strength of the composites declines to 238.9-226.1 MPa also with a brittle fracture, but an increasing of fracture displacement from 0.7 mm to 1.0 mm. After HTT at 2000-2500℃, both SiC and TaC interlayer are damaged. The flexural strength sharply declines to 158.7-131.8 MPa with an obvious change of fracture behavior from brittleness to pseudo-ductility.

参考文献

[1] 李蕴欣,张绍维,周瑞发.碳/碳复合材料[J].材料科学与工程,1996,14(2):6-14.
[2] 熊翔,黄伯云,李江鸿,等.准三维C/C复合材料的弯曲性能及其破坏机理[J].航空材料学报,2006,26(4):87-91.
[3] Fitzer E.Future of carbon-carbon composites[J].Carbon,1987,25(2):163-190.
[4] Lin Teng.Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers[J].Carbon,1993,37(12):2011-2019.
[5] Jones R H,Seand L L,Kohyama A,Fenici P.Recentadvances in the development of SiC/SiC as a fusion structuralmaterial[J].Fusion Engineering and Design,1998,41(1-4):15-24.
[6] Li Guodong,Xiong Xiang,Huang Baiyun.Structuralcharacteristics and formation mechanisms of crack-freemultilayer TaC/SiC coatings on carbon-carbon composites[J].Transactions of Nonferrous Metals Society of China,2008,18(2):255-261.
[7] 马福康,邱向东,贾厚生,等.铌与钽[M].长沙:中南工业大学出版社,1997:19-20.
[8] 李国栋,熊翔,黄伯云.温度对CVD-TaC涂层组成、形貌与结构的影响[J].中国有色金属学报,2005,15(4):565-571.
[9] Xu Yongdong,Zhang Litong.Three-dimensional carbon/silicon carbide composites prepared by chemical vaporinfiltration[J].Journal of the American Ceramic Society,1997,80(7):1897-1900.
[10] ULTRAMET.Ceramic protective coatings[DB/OL].[2011-10-03].http://www.ultramet.com/ceramic_protective_coatings.html.
[11] 熊翔,王亚雷,李国栋,陈招科.CVI-SiC/TaC改性C/C复合材料的力学性能及其断裂行为[J].复合材料学报,2008,25(5):91—97.
[12] Chen Zhaoke, Xiong Xiang, Li Guodong, et al. Ablation behaviors of carbon/carbon composites with C - SiC - TaC multi-interlayers [J]. Applied Surface Science, 2009, 255 (22): 9217-9223.
[13] Xiong Xiang, Wang Yalei, Chen Zhaoke, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/ TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers [J]. Solid State Sciences, 2009, 11(8): 1386-1392.
[14] Chen Z K, Xiong X, Huang B Y. Oxidation mechanisms of C-SiC - TaC composites prepared by chemical vapor infiltration [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(A01): 145-149.
[15] 陈招科,熊翔,黄伯云,等.含PyC—TaC—PyC复合界面C/C材料的氧乙炔焰烧蚀行为[J].复合材料学报,2009,26(3):155—161.
[16] 周红英,舒武炳,刘建军,等.高温热处理与C/C复合材料性能关系研究[J].固体火箭技术,2007,30(1):68—71.
[17] Aglan H A. The effect of intermediate graphitization on the mechanical and fracture behavior of 2-D C/C composites [J]. Carbon, 1993, 31(7): 1121-1129.
[18] 于澍,刘根山,李溪滨,等.热处理温度对炭/炭复合材料性能的影响[J].硅酸盐学报,2003,31(9):842—847.
[19] 马福康,邱向东,贾厚生,等.铌与钽[M].长沙:中南工业大学出版社,1997:26-27.
[20] Balasingh C, Singh V. Measurement of residual stresses in CFRP laminates by X- ray diffraction method [J]. Bulletin of Material Science, 1997, 20(3): 325-332.
[21] Zhang Qing, Cheng Laifei, Zhang Litong, Xu Yongdong. Thermal expansion behavior of carbon fiber reinforced chemical-vapor-infiltrated silicon carbide composites from room temperature to 1400℃ [J]. Materials Letters, 2006, 60(27) : 3245-3247.
[22] 肖志超,陈青华,金志浩,等.准三维炭/炭复合材料力学性能分析[J].材料科学与工程学报,2008,26(5):693—696.
[23] 陈腾飞,黄伯云,廖寄乔,等.热处理温度对PAN基炭纤维结构的影响[J].功能材料,2002,33(4):447—449.
[24] 李江鸿,张红波,熊翔,等.不同纤维体积分数CVI炭/炭复合材料的石墨化度[J].复合材料学报,2005,22(3):55—59.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%