设计并采用热压烧结的方法成功制备了TiCp/W和ZrCp/W两个系列碳化物颗粒增强钨基新型复合材料,并对其组织结构、室温力学性能及高温力学性能进行了系统研究.结果表明,复合材料体系的组元间有很好的热力学相容性和化学相容性;在异相界面处发生了W原子向TiC和ZrC晶格的扩散,分别形成了(Ti,W)C和(Zr,W)C固溶体,促进了两相界面结合和复合材料的致密化.碳化物颗粒的加入强烈阻碍了W晶粒的长大,并显著提高了复合材料的室温和高温力学性能.复合材料的抗弯强度和抗拉强度均随着试验温度的升高先增大后减小,在800~1400℃时出现峰值,而抗压强度则随着温度的升高而单调下降.室温强化机制是细晶强化和第二相弥散强化,高温强化机理有:位错强化、细晶强化、界面强化及碳化物颗粒的弥散强化.
参考文献
[1] | CrowsonA;Chen E S.The TMS symposium on recent advances in tungsten and tungsten alloys[J].Journal of The Minerals,Metals & Materials Society,1991(07):27. |
[2] | YihSWH;Wang C T.Tungsten sources, metallurgy ,properties and applications[M].New York: Plenum Press,1979 |
[3] | ChenLC.Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersions[J].International Journal of Refractory Metals and Hard Materials,1993(12):41. |
[4] | KitsunaiY;Kurishita H;Kayano H et al.Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC[J].Journal of Nuclear Materials,1999,271-272:423. |
[5] | MauchiM;Saito N;Nakanishi M et al.Tensile properties at elevated temperature of W-1% La2O3[J].Materials Science and Engineering A,1996,214:174. |
[6] | TakidaT;Mabuchi M;Nakamura M et al.Mechanical properties of a ZrC-dispersed Mo alloy processed by mechanical alloying and spark plasma sintering[J].Materials Science and Engineering A,2000,276:269. |
[7] | HanadaS;Nomura N;Yoshimi K.Deformation and fracture of TiC/MoNb in-situ composites[M].Proc Intl Conf Properties of Complex Inorganic Solids,2000:393. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%