欢迎登录材料期刊网

材料期刊网

高级检索

为了同时改善生产平板型注塑制品时的总体收缩度和收缩均匀度,提出基于统计提升准则的注塑成型工艺参数的多目标优化方法,寻找平衡两个质量指标的优化设计。首先利用小规模的实验设计方法获得建模数据集,针对应用中存在的建模数据奇异点问题提出一种数据预处理方法,并依此分别建立两个指标的初始替代模型,用于代替优化过程中代价高昂的计算分析;随后依据Pareto统计提升准则寻找新的采样点加入建模数据集来重新建模,使寻优结果不断趋近真实的Pareto前沿。仿真结果表明,较常规的建模优化方法,本文提出的方法能使用较少的采样数据,显著地改善平板制品的收缩质量。对于HDPE材质的矩形制品,保压曲线先恒定后线性递减可以获得好的收缩均匀度,使用压力上限值恒定保压可以获得好的平均收缩度。

To improve the shrinkage and evenness of the production of injection molded slab, this article introduces an iterative multi-objective optimization method based on Kriging surrogate model to find the Pareto set of the optimization problem. The idea of the iterative optimization method is first to establish two approximation function relationships between those index and process parameters by a small size of design of experiment ( DOE) with surrogate model to alleviate the expensive computational expense in the optimization iterations. And then statistical improvement criterion of Pareto front is used to provide direction in which additional training samples could be added to better the surrogate model. This process will loop and bring the optimization result close to the ideal Pareto front. Simulation results show that a much better shrinkage quality of molded part can be achieved with the proposed method with smaller amount of samples compared with traditional modeling and optimization method. For rectangular HDPE products, good evenness can be gotten using linear decreasing pressure curve after a period of constant value, and good shrinkage can be gotten using holding pressure with upper limits.

参考文献

[1] ROSATO D V;ROSATO M G.Injection Molding Handbook[M].Boston:Kluwer,2000
[2] 周云郊,兰凤崇,黄信宏,陈吉清.钢铝板材压力连接模具几何参数多目标优化[J].材料科学与工艺,2011(06):86-93,99.
[3] Xi Chen;Furong Gao .A study of packing profile on injection molded part quality[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):205-213.
[4] Chuang Li;Fu-Li Wang;Yu-Qing Chang;Yang Liu .A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process[J].The International Journal of Advanced Manufacturing Technology,2010(5/8):505-511.
[5] Jansen KMB.;Husselman MH.;Van Dijk DJ. .Effect of processing conditions on shrinkage in injection molding[J].Polymer engineering and science,1998(5):838-846.
[6] KNOWLES J;CORNE D;DEB K.Multiobjective Problem Solving from Nature:from Concepts to Appli-cations[M].Berlin:Springer-Verlag,2007
[7] Kim, IY;de Weck, OL .Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation[J].Structural and multidisciplinary optimization,2006(2):105-116.
[8] DEB K;PRATAP A;AGARWAL S et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(02):182-197.
[9] 金溪,高金良,张杰,王芳.利用NSGA-Ⅱ算法求解供水管网优化改造模型[J].哈尔滨工业大学学报,2008(12):1969-1976.
[10] WILSON B;CAPPELLERI D;SIMPSON W et al.Efficient pareto frontier exploration using surrogate ap-proximations[J].Optimization Engineering,2001,2:31-50.
[11] KNOWLES J;HUGHES E J.Multiobjective optimiza-tion on a budget of 250 evaluations[A].,2005:176-190.
[12] A. J. Keane .Statistical Improvement Criteria for Use in Multiobjective Design Optimization[J].AIAA journal,2006(4):879-891.
[13] RASMUSSEN C E;WILLIAMS C K I.Gaussian Processes for Machine Learning[M].Massachusettes:The MIT Press,2006
[14] Recent Advances In Surrogate-based Optimization[J].Progress in aerospace sciences,2009(1/3):50.
[15] SACKS J;WELCH W J;MITCHELL T J.Design and Analysis of Computer Experiments[M].Berlin:Springer-Verlag,2003
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%