欢迎登录材料期刊网

材料期刊网

高级检索

纳米颗粒-介电复合材料显示出优良的三阶非线性光学性能,是应用于未来全光器件的理想材料.其中,纳米颗粒的尺寸、浓度、组成和结构,基体的选择,测试方法中选用的激光波长和脉冲宽度等多种因素都对此类复合材料的三阶非线性光学性能有很大的影响,了解这些影响因素对材料的制备和应用具有重要的指导意义.在此基础上,研究指出核壳结构纳米颗粒-介电复合材料具有更加优异的三阶非线性光学性能,是目前的研究热点.

参考文献

[1] 黄得群;单振国;干福熹.新型光学材料[M].北京:科学出版社,1991
[2] Smith DD;Fischer G;Boyd RW;Gregory DA;UNIV ALABAMA DEPT PHYS HUNTSVILLE AL 35899.;ROME LAB PHOTON MAT BRANCH HANSCOM AFB MA 01731. .Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects[J].Journal of the Optical Society of America, B. Optical Physics,1997(7):1625-1631.
[3] Neeves A E;Bimboim M H J .Composite structures for the enhancement of nonlinear-optical susceptibility[J].Journal of the Optical Society of America B:Optical Crystal Physics,1989,6:787.
[4] 杜天伦,杨修春,黄文旵.离子交换法制备金属纳米颗粒-玻璃复合材料的研究进展[J].材料导报,2006(06):52-55.
[5] 曲士良,赵崇军,高亚臣,宋瑛林,刘树田,邱建荣,朱从善.飞秒激光所致金纳米粒子析出的玻璃非线性吸收[J].物理学报,2005(01):139-143.
[6] 杨修春,董志伟,李志会,钱士雄,黄文旵.银纳米颗粒-玻璃复合薄膜的三阶非线性光学性能[J].武汉理工大学学报,2007(z1):305-310.
[7] Olivares J.;del Coso R.;de Nalda R.;Solis J.;Afonso CN.;Stepanov AL.;Hole D.;Townsend PD.;Naudon A.;Requejo-Isidro J. .Large enhancement of the third-order optical susceptibility in Cu-silica composites produced by low-energy high-current ion implantation[J].Journal of Applied Physics,2001(2):1064-1066.
[8] Philip R.;Sandhyarani N.;Pradeep T.;Kumar GR. .Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters[J].Physical Review.B.Condensed Matter,2000(19):13160-13166.
[9] 李博芳,林健,井冲,刘长城,黄文旵,康海峰,孙真荣.AgCl纳米晶掺杂铌碲酸盐系统非线性光学玻璃材料研究[J].功能材料,2006(11):1703-1705.
[10] Hao J L;Atsushi K;Michil I .Optical phonons in the excited state of CuBr quantum dots[J].Physical Review B,2003,68:1.
[11] Lu S G;Yu Y J;Mak C L et al.Nonlinear optical properties in CdS/silica nanocomposites[J].Microelectronic Engineering,2003,66:171.
[12] Mohanta D;Choudhury A .Laser-induced photocurrent measurement in quasi-arrayed ZnS quantum dots[J].Journal of Physics E:Scientific Instruments,2005,27:176.
[13] 刘发民,王天民,张立德.纳米GaSb-SiO2复合薄膜的非线性光学特性[J].物理学报,2002(01):183-186.
[14] 向卫东,孙晓君.含PbS微晶掺杂Na2O-B2O3-SiO2玻璃的制备及其光学性质[J].硅酸盐学报,2000(01):34-38.
[15] Vijayalakshmi S;George MA;Grebel H;NEW JERSEY INST TECHNOL OPT WAVEGUIDE LAB NEWARK NJ 07102. .Nonlinear optical properties of silicon nanoclusters[J].Applied physics letters,1997(6):708-710.
[16] Edgar A.;Pantoja A. .Optical properties of CuCl particles in fluorozirconate glass[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,1998(2/3):141-148.
[17] 李丹,马国宏,黄为民,钱士雄.掺杂CdS超微粒的ZrO2薄膜的光学性质[J].光学学报,2002(06):688-691.
[18] Vladimir P D;Andrei K B;Heinz N et al.Size dependent for conduction electrons in Ag nanoparticles[J].Nano Letters,2004,4(08):1535.
[19] 邓燕,王沛,张斗国,唐麟,焦小瑾,明海.金属颗粒复合介质膜的有效非线性光学性质的数值研究[J].量子电子学报,2006(05):687-691.
[20] 杨修春,李志会,李伟捷,杜天伦,黄文旵.银纳米颗粒-玻璃复合材料的光学性能[J].功能材料与器件学报,2007(06):554-560.
[21] 王伟田,孙玉明,戴振宏,关东仪.Au-BaTiO3复合薄膜的脉冲激光沉积制备及其非线性光学效应[J].光学学报,2006(08):1265-1268.
[22] Song R;Guan D Y;Ma L B et al.Exceptionally large third-order optical susceptibility in Ag:SrBi2Nb2O9 composite films[J].Materials Letters,2007,61:1537.
[23] Liao H B;Xiao R F et al.Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale[J].Applied Physics Letters,1998,72(15):1817.
[24] 杜天伦 .金属纳米颗粒掺杂玻璃及其光学性能的研究[D].上海:同济大学,2007.
[25] YANG XiuChun,LI ZhiHui,LI WeiJie,XU JingXian,DONG ZhiWei,QIAN ShiXiong.Optical nonlinearity and-ultrafast dynamics of ion exchanged silver nanoparticles embedded in soda-lime silicate glass[J].科学通报(英文版),2008(05):695-699.
[26] 李志会,杨修春,杜天伦.核壳结构纳米颗粒的研究进展[J].材料导报,2007(z1):189-192.
[27] Anderson T S;Magruder Ⅲ R H et al.Fabrication of Cucoated ig nanocrystals in silica by sequential ion implantation[J].Nuel Instr and Meth B,2000,171:401.
[28] Giorqio S;Henry C R .Core-shell bimetallic particles,prepared by sequential impregnations[J].EPJ Appl Phys,2002,20:23.
[29] de Julian Fernandez C;Tagliente M A;Mattei G et al.Structural and magnetic properties of Fe-Al silica composites prepared by sequential ion implantation[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms,2004,216:245.
[30] Cattaruzza E;Battaglin G;Polloni R et al.Nanocluster formation in silicate glasses by sequential ion implantation procedures[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms,1999,148:1007.
[31] Mattei G;Maurizio C;Mazzoldi P;D'Acapito F;Battaglin G;Cattaruza E;Fernandez CDJ;Sada C .Dynamics of compositional evolution of Pd-Cu alloy nanoclusters upon heating in selected atmospheres[J].Physical review, B. Condensed matter and materials physics,2005(19):5418-1-5418-11-0.
[32] Gong HM;Wang XH;Du YM;Wang QQ .Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots[J].The Journal of Chemical Physics,2006(2):24707-1-24707-4-0.
[33] Mauro Lomascolo;Arianna Creti;Gabriella Leo;Lorenzo Vasanelli;Liberato Manna .Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals[J].Applied physics letters,2003(3):418-420.
[34] Meldrum A.;White CW.;Boatner LA. .Nanocomposites formed by ion implantation: Recent developments and future opportunities[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,2001(0):7-16.
[35] Hans J W;Zhon H S;Takami S et al.Enhanced optical properties of metal-coated nanoparticles[J].Journal of Applied Physics,1993,73:1043.
[36] Yang Y.;Shi JL.;Chen HR.;Dai SG.;Liu Y. .Enhanced off-resonance optical nonlinearities of Au@CdS core-shell nanoparticles embedded in BaTiO3 thin films[J].Chemical Physics Letters,2003(1/2):1-6.
[37] Yong Y;Nogami M;Shi J L et al.Enhancement of thirdorder optical nonlinearities in 3-Dimensional films of dielectric shell capped Au composite nanoparticles[J].Journal of Physical Chemistry B,2005,109:4865.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%