将偏最小二乘法与BP人工神经网络结合,建立了一种新的预测模型:PLS-BP神经网络模型。模型应用偏最小二乘法来提取主成分R及得分T,根据交叉有效性检验和留N法来确定PLS的成分个数,PLS-BP网络的输入数目和网络隐含层的节点数目,最终确定网络的结构为6-11-1。应用该模型可以有效地避免几个因素之间的多重相关性问题,同时也能更好地解决非线性问题,克服了偏最小二乘和单纯BP网络的缺点。在钢筋屈服强度的预测中表明,应用PLS-BP模型预测的误差均小于1.03%,比应用于偏最小二乘回归模型的误差6.19%要小得多,并且预测值和实际值比较吻合。
Combining with the partial least squares and artificial network , a new prediction model is established-- PLS-BP neural network model. Partial least squares regression is applied to extract principal components R and score T, according to the cross validation and left N method, PLS component number, input of the PLS-BP neu- ral network and the number of hidden layer nodes of network is determined, ultimately is the network structure for 6-11-1. Using the model, factors between multiple correlations can be effectively avoided; at the same time, the non-linear problem can be solved better and partial least squares and simple BP network faults can be overcome. The yield strength of steel projections shows that the error predicted by application of PLS-BP model is less than 1.03% ; it is much smaller than the partial least squares regression error of 6.19% and coincides with the actual value.
参考文献
[1] | 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999 |
[2] | 周秀平,王文圣,曾怀金.偏最小二乘与人工神经网络耦合模型在酸雨pH值预测中的应用[J].水利水电科技进展,2006(04):50-52. |
[3] | 周品;赵新芬.MATLAB数学建模与仿真[M].北京:国防工业出版社,2009:4. |
[4] | 刘剑,袁守谦,李建国.用基于统计模式识别的优化BP网络预报转炉的终点磷含量[J].钢铁研究学报,2005(03):65-67,78. |
[5] | 郭进;刘洪霖 .计算机辅助材料设计的偏最小二乘法一人工神经网络研究[J].计算机与应用化学,1996,13(04):253. |
[6] | 刘琼荪,张艳粉.基于偏最小二乘的BP网络模型及其应用[J].重庆大学学报(自然科学版),2007(07):148-151. |
[7] | 莫春立,李强,李殿中,冯峰,詹志东.应用回归和神经网络方法预测热轧带钢性能[J].金属学报,2003(10):1110-1114. |
[8] | 刘贵立,张国英,曾梅光.用人工神经网络模型研究微量元素对钢力学性能的影响[J].钢铁研究,2000(01):48-50. |
[9] | 刘洪霖;包宏.化工冶金过程人工智能优化[M].北京:冶金工业出版社,1999:50. |
[10] | 刘晓燕;赵西成 .统计模式识别的优化BP网络在20MnVB钢冲击韧度预测中的应用[J].材料热处理技术,2009,38:5. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%