目前,制备纳米管阵列结构α-Fe2 O3成为一种有效解决α-Fe2 O3导电性差、电子-空穴复合率高和空穴扩散长度短等问题的重要技术。综述了铁表面阳极氧化法制备α-Fe2 O3纳米管阵列的研究进展,主要包括阳极氧化过程中α-Fe2 O3纳米管阵列形成机制、制备影响因素(溶液组成、工艺条件和热处理工艺)及其光催化水处理、光催化产氢和电容器领域的应用,并评述了α-Fe2 O3纳米管阵列薄膜的应用前景和研究中存在的问题。
Recently, synthesis of hematite (α-Fe2 O3 ) nanotube arrays (α-Fe2 O3 NTs) deems as an important technique to ef-ficiently solve intrinsic problems of α-Fe2 O3 , for example, poor electron mobility, high electron-hole recombination rate and short hole diffusion length. In this paper, we reviewed the research progress in α-Fe2 O3 NTs film fabricated by anodization on the surface of iron. It exhibited the formation mechanism of α-Fe2 O3 NTs and its effect factors during anodization, such as solution composi-tion, anodization conditions and heat treatment process and its applications in phtocatalyst applied in water treatment and phtoelec-trocatalyst in hydrogen production through water reduction and supercapacitors. Finally, application prospect and research problems in α-Fe2 O3 NTs were also proposed.
参考文献
[1] | CORNELL R M,SCHWERTMANN U. The Iron Oxide:Struc-ture,Properties,Reactions,Occurrence and Uses[M]. New York:VCH,2004.,2004. |
[2] | MOR G K,PRAKASAM H E,VARGHESE O K,et al . Ver-tically Oriented Ti-Fe-O Nanotube Array Films:Toward a Useful Material Architecture for Solar Spectrum Water Pho-toelectrolysis[J].Nano Letters,2007,7 |
[3] | MOHAPATRA S K,JOHN S E,BANERJEE S,et al . Water Photooxidation by Smooth and Ultrathin α-Fe2 O3 Nanotube Arrays[J].Chemistry of Materials,2009,21 |
[4] | KAY A,CESAR I,GRATZE M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2 O3 Films[J]. Jour-nal of American Chemistry Society, 2006, 128:15714-15721.,2006. |
[5] | LATEMPA T J,FENG X J,PAULOSE M,et al . Tempera-ture-dependent Growth of Self-assembled Hematite(α-Fe2 O3)Nanotube Arrays:Rapid Electrochemical Synthesis and Photoelectrochemical Properties[J].Journal of Physical and Chemistry C,2009,113 |
[6] | MAGGLIE P,KARTHIK S,HARIPRIYA E P,et al. Highly-Ordered Titania Nanotube Arrays:US,Patent 0187172 A1 [P]. 2010-07-29.,2010. |
[7] | KULKARNI V S,BOGGS J M,BROWN R E . Modulation of Nanotube Formation by Structural Modifications of Sphingo-lipids[J].Biophysical Journal,1999,77(7):319-330.,1999. |
[8] | CHEN L F,XIE J X,AATRE K R,et al . Iron Oxide Mag-netic Nanotubes and Their Drug Loading and Release Capa-bilities[J].Journal of Nanotechnology England Medicine,2010(1):11009-11017.,2010. |
[9] | SUN Z Y,YUAN H Q,LIU Z M,et al . A Highly Efficient Chemical Sensor Material for H2 S:α-Fe2 O3 Nanotubes Fabricated Using Carbon Nanotube Templates[J].Ad-vanced Materials,2005,17 |
[10] | JIA C J,SUN L D,YAN Z G,et al . Single-crystalline Iron Oxide Nanotubes[J].Angewandte Chemie International E-dition,2005,44 |
[11] | SONG L M,ZHANG S J,CHEN B,et al . A Hydrothermal Method for Preparation of α-Fe2 O3 Nanotubes and Their Catalytic Performance for Thermal Decomposition of Ammo-nium Perchlorate[J].Colloids and Surfaces A:Physico-chemical and Engineering Aspects,2010,360 |
[12] | LIU L,KOU H Z,MO W L,et al . A Hydrothermal Method for Preparation of α-Fe2 O3 Nanotubes and Their Catalytic Performance for Thermal Decomposition of Ammonium Per-chlorate[J].Journal of Physical Chemistry B,2006,110 |
[13] | LIU J P,LI Y Y,FAN H J,et al . Iron Oxide-based Nanotube Arrays Derived from Sacrificial Template-accelerated Hy-drolysis:Large-area Design and Reversible Lithium Storage[J].Chemistry of Materials,2010,22 |
[14] | SHANKAR K,MOR G K,FITZGERALD A,et al . Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide-Water Mixtures[J].Journal of Physical Chemistry C,2006,111 |
[15] | PAULOSE M,SHANKAR K,YORIYA S,et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length [J]. Journal of Physical Chemistry B, 2006, 110:16179-16184.,2006. |
[16] | GONG D,GRIMES C A,VARGHESE O K . Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation[J].Journal of Materials Research,2001,16 |
[17] | LEE W J,SMYRL W H . Zirconium Oxide Nanotubes Syn-thesized via Direct Electrochemical Anodization[J].Elec-trochemical and Solid-state Letters,2005,8(3):B7-B9.,2005. |
[18] | ALLAM N K, FENG X J, GRIMES C A . Self-assembled Fabrication of Vertically Oriented Ta2 O5 Nanotube Arrays, and Membranes Thereof,by One-step Tantalum Anodization[J].Chemistry of Materials,2008,20 |
[19] | RANGARAJU R R,RAJA K S,PANDAY A,et al . An In-vestigation on Room Temperature Synthesis of Vertically O-riented Arrays of Iron Oxide Nanotubes by Anodization of I-ron[J].Electrochimica Acta,2010,55 |
[20] | ZHANG Z H,HOSSAIN M F,TAKAHASI T . Self-assembled Hematite(α-Fe2 O3)Nanotube Arrays for Photoelectrocata-lytic Degradation of Azo Dye under Simulated Solar Light Ir-radiation[J].Applied Catalysis B:Environmental,2010,95 |
[21] | RANGARAJU R R,PANDAY A,RAJA K S,et al. Nano-structured Anodic Iron Oxide Film as Photoanode for Water Oxidation[J]. Journal of Physics D:Applied Physics,2009, 42:135303-135312.,2009. |
[22] | MARIN F I,HAMSTRA M A,VANMAEKELBERGH D. Greatly Enhanced Sub-bandgap Photocurrent in Porous GaP Photoanodes[J]. Journal of Electrochemistry Society,1996, 143:1137-1142.,1996. |
[23] | QU X,KOBAYASHI N,KOMATSU T . Solid Nanotubes Com-prising Alpha-Fe2 O3 Nanoparticles Prepared from Ferritin Protein[J].ACS Nano,2010,4(3):1732-1738.,2010. |
[24] | XIE K Y,LI J,HUANG H T,et al . Highly Ordered Iron Oxide Nanotube Arrays as Electrodes for Electrochemical Energy Storage[J].Electrochem Commun,2011,13 |
[25] | FUJISHIMA A,HONDA K . Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature,1972,37(238):37-38.,1972. |
[26] | BJORKSTEN U,MOSER J,GRATZEL M . Photoelectroche-mical Studieson Nanocrystalline Hematite Films[J].Chemis-try of Materials,1994,6 |
[27] | MURPHY A B,BARNESA P R F,RANDENIYA L K,et al . Efficiency of Solar Water Splitting Using Semiconductor E-lectrodes[J].International Journal of Hydrogen Energy,2006,31 |
[28] | BARD A J,FOX M A . Artificial Photosynthesis:Solar Split-ting of Water to Hydrogen and Oxygen[J].Accounts of Chemical Research,1995,28 |
[29] | SHANKAR Karthik,MOR Gopal K,PRAKASAM1 Haripriya E,et al . Highly-ordered TiO2 Nanotube Arrays up to 220 μm in Length:Use in Water Photoelectrolysis and Dye-sensitized Solar Cells[J].Nanotechnology,2007,18 |
[30] | LIU X,LIU Z Q,LU J L,et al . Electrodeposition Preparation of Ag Nanoparticles Loaded TiO2 Nanotube Arrays with En-hanced Photocatalytic Performance[J].Applied Surface Sci-ence,2014,288 |
[31] | ZHU K,NEALE N R,MIEDANER A,et al . Enhanced Charge Collection Efficiencies and Light Scattering in Dye-sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays[J].Nano Letters,2007,7 |
[32] | MOR G K,SHANKAR K,PAULOSE M,et al . Use of High-ly-ordered TiO2 Nanotube Arrays in Dye-sensitized Solar Cells[J].Nano Letters,2006,6 |
[33] | SHANKAR K,BANDARA J,PAULOSE M,et al. Highly Ef-ficient Solar Cells Using TiO2 Nanotube Arrays Sensitized with a Donor-antenna Dye [J]. Nano Letters, 2008, 8:1654-1659.,2008. |
[34] | GRIMES C A . Synthesis and Application of Highly Ordered Arrays of TiO2 Nanotubes[J].Journal of Materials Chemis-try,2007,17 |
[35] | LAZAROUK S,XIE Z L,CHIGRINOV V,et al . Anodic Na-noporous Titania for Electro-optical Devices[J].Japanese Journal of Applied Physics:Part 1,2007,46 |
[36] | YANG LiXia,LUO ShengLian,CAI QingYun,YAO ShouZhuo.A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications[J].科学通报(英文版),2010(04):331-338. |
[37] | PARAMASIVAM I,JHA H,LIU N,et al . A Review of Pho-tocatalysis Using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures[J].Small,2012,8(20):3073-3103.,2012. |
[38] | KANG Q,CAO J Y, ZHANG Y J,et al . Reduced TiO2 Nano-tube Arrays for Photoelectrochemical Water Splitting[J].Journal of Materials Chemistry A,2013,1 |
[39] | REGONINI D,BOWEN C R,JAROENWORALUCK A,et al . A Review of Growth Mechanism,Structure and Crystal-linity of Anodized TiO2 Nanotubes[J].Material Science and Engineering Repaor,2013,74 |
[40] | HUO K F,GAO B,FU J J,et al . Fabrication,Modification, and Biomedical Applications of Anodized TiO2 Nanotube Arrays[J].Royal Society of Chemistry Advances,2014,4 |
[41] | 雷建飞,李伟善.钛基阳极氧化法制备TiO2纳米管阵列研究进展[J].电源技术,2008(12):875-879. |
[42] | QI X P,SHE G W,WANG M,et al . Electrochemical Synthe-sis of p-type Zn-doped α-Fe2 O3 Nanotube Arrays for Photo-electrochemical Water Splitting[J].Chemistry Communica-tion,2013,49 |
[43] | 郝春静,湛含辉,王晓.硅烷偶联剂链长对纳米TiO2表面改性的影响[J].表面技术,2013(02):10-13. |
[44] | 钱超时,李鹏飞,郭锋,尹建代,贾岳.微弧氧化TiO2膜层相结构及其对光催化性能的影响[J].表面技术,2012(06):7-9. |
[45] | LI J,LIN C J,LAI Y K,et al . Photogenerated Cathodic Pro-tection of Flower-like, Nanostructured, N-doped TiO2 Film on Stainless Steel[J].Surface and Coatings Technology,2010,205(2):557-564.,2010. |
[46] | LIN Z Q,LAI Y K,HU R G,et al . A Highly Efficient ZnS/CdS/TiO2 Photoelectrode for Photogenerated Cathodic Protec-tion of Metals[J].Electrochim Acta,2010,55 |
[47] | LI J,LIN C J,LIN C G . A Photoelectrochemical Study of Highly Ordered TiO2 Nanotube Arrays as the Photoanodes for Cathodic Protection of 304 Stainless Steel[J].Journal of Electrochemistry Society,2011,158 |
[48] | LI J,LIN C J,LI J T,et al . A Photoelectrochemical Study of CdS Modified TiO2 Nanotube Arrays as Photoanodes for Ca-thodic Protection of Stainless Steel[J].Thin Solid Films,2011,519 |
[49] | ZHOU M J,ZHANG N,ZHANG L,et al . Photocathodic Pro-tection Properties of TiO2-V2 O5 Composite Coatings[J].Materials and Corrosion,2013,64(11):996-1000.,2013. |
[50] | BARATI N,FAGHIHI SANI M A,GHASEMI H . Photoca-thodic Protection of 316L Stainless Steel by Coating of Ana-tase Nanoparticles[J].Protection of Metals and Physical Chemistry of Surfaces,2013,49(1):109-112.,2013. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%