欢迎登录材料期刊网

材料期刊网

高级检索

目的研究高温高压条件下FV(520)B不锈钢硫化初始阶段的腐蚀机理。方法在573 K,H2S分压为1.5 MPa条件下制备硫化腐蚀试样,利用XPS,SEM等分析硫化膜成分、元素含量及分布。结果硫化膜为双层膜结构,外层成分为Fe7 S8,FeS2和Ni(1-x) S,内层成分为Fe7 S8,FeS2,Ni(1-x) S和Cr2 S3。 XPS数据显示Fe7 S8,FeS2中存在Fe2+和Fe3+,且Fe3+平均原子数分数分别为36.53%和35.78%,Ni(1-x) S硫化物中存在Ni2+,Ni3+,且Ni3+的平均质量分数约为32.08%。结论铁镍硫化物的主要缺陷为阳离子缺陷,且缺陷浓度较高,内层中Cr2 S3抑制Fe,Ni离子向外迁移,但硫化初期阶段Cr2 S3的含量少,抑制作用不明显。

ABSTRACT:Objective To investigate the sulfidation mechanism of FV(520) B stainless steel at primary stage. Methods The sulfidation specimen was prepared by the exposure of FV(520)B stainless steel to the atmosphere of 1. 5 MPa H2S at 300℃. XPS and SEM analysis techniques were applied to investigate the content, the distribution of element and the composition of the sulfide scale. Results The multilayered sulfide scale was composed of an outer layer of Fe7 S8 ,FeS2 , Ni(1-x) S and a inner layer of Fe7 S8 , FeS2 , Ni(1-x) S, Cr2 S3 . XPS data indicated that Fe3+and Fe2+were found in Fe7 S8 and FeS2 in all sputtered layers, and the average contents of Fe3+were 36. 53% and 35. 78%, respectively. Ni2+and Ni3+were also observed in Ni(1-x) S and the content of Ni3+was 32. 08%. Conclusion The data analysis demonstrated that the cation vacancy was the predominant defect in ferrous, nickel sulfide and the defect concentrations were high. Outward diffusion of Fe and Ni ions were constrained by Cr2 S3 in the inner layer, but the inhibitory effect was not obvious due to the lack of Cr2 S3 in sulfide scale at the primary stage of sulfidation.

参考文献

[1] 冯星安,黄柏宗,高光第.对四川罗家寨气田高含CO2、H2S腐蚀的分析及防腐设计初探[J].石油工程建设,2004(01):10-14.
[2] 植田昌克.合金元素和显微结构对CO2/H2S环境中腐蚀产物稳定性的影响[J].石油与天然气化工,2005(01):43-52.
[3] Mrowec S.;Hashimoto K. .CHEMICAL DIFFUSION IN NON-STOICHIOMETRIC METAL SULPHIDES[J].Journal of Materials Science,1995(19):4801-4816.
[4] MROWEC S;PRZYBYLSKI K .Transport Properties of Sul-fide Scales and Sulfidation of Metals and Alloys[J].Oxida-tion of Metals,1985,23:107-139.
[5] MROWEC S;WALEC T;WERBER T .High-temperature Sul-fur Corrosion of Iron-Chromium Alloys[J].Oxidation of Me-tals,1969,1(01):93-120.
[6] 齐慧滨.金属高温硫化研究进展[J].腐蚀科学与防护技术,1996(02):114.
[7] 齐慧滨;朱日彰;何业东 .Fe-25Cr合金在H2/H2 S混合气氛中的高温硫化腐蚀[J].北京科技大学学报,1993,15(04):415-418.
[8] Shaojun Yuan;Bin Liang;Yu Zhao;S.O. Pehkonen .Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2013(Sep.):353-366.
[9] HERBERT J .Surface Chemistry and Morphology of Poorly Crystalline Iron Sulfides Precipitated in Media Containing Sulfate-reducing Bacteria[J].Chemical Geology,1998,144:87-97.
[10] TECHKARNJANARUK S .Iron Sulfides and Sulfur Species Produced at Hematite Surfaces in the Presence of Sulfate-reducing Bacteria[J].Geochimica et Cosmochimica Acta,2001,65(02):223-235.
[11] 殷秀银,柏立庆,吴玉萍.扩散处理后的FeCrNi涂层结合强度与断口特征研究[J].表面技术,2012(05):64-69.
[12] YAGI H .Chemical Diffusion and Electrical Conductivity of Ni3依xS2[J].Oxidation of Metals,1982,18(1/2):41-53.
[13] 宁文涛,冯皓,赵钺.烟囱用耐候钢在海水脱硫中的腐蚀研究及寿命预测[J].装备环境工程,2013(01):17-21,40.
[14] LEE T W .Sulfidation Behavior of Inconel 738 Superalloy at 500~900 益[J].Oxidation of Metals,2001,56(1/2):51-71.
[15] PRATT A R .X-ray Photoelectron and Auger Electron Spec-troscopic Studies of Pyrrhotite and Mechanism of Air Oxida-tion[J].Geochimica et Cosmochimica Acta,1994,58(02):827-841.
[16] 万红敬,黄红军,胡建伟,王晓梅,李志广.三种铜缓蚀剂抗H2S腐蚀性能研究[J].装备环境工程,2013(05):47-51.
[17] 任永峰,毕宗岳,李周波.3Cr钢和碳钢在含CO2环境中的腐蚀速率对比[J].表面技术,2013(01):29-31,38.
[18] MROWEC K .Study on Sulfidation Mechanism of 30 Steel[J].Oxidation of Metals,1985,23(3/4):107-137.
[19] 张兴华;骆晨;刘明 .AF1410 高强度钢大气腐蚀试验研究[J].装备环境工程,2013,10(06):19-22.
[20] 汪新衡,钱书琨,刘安民,朱航生.激光熔覆纳米Al2O3颗粒增强Ni基合金涂层界面组织和高温热腐蚀性能[J].表面技术,2013(06):23-26,47.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%