欢迎登录材料期刊网

材料期刊网

高级检索

本文针对含有表面张力为源项的不可压 Navier-Stokes 方程,在非交错网格下比较研究了两类处理源项的Projection 方法.并比较研究了网格中心点处,压力梯度和表面张力的两种不同计算技术.表面张力通过 CSF(ContinuousSurface Force) 模型来计算.文中对一初始处于静止状态无外力作用的液滴进行模拟,通过分析虚假流速和压力分布来讨论各方法的优缺点.

A comparison between two algorithms is conducted with a collocated mesh for incompressible Navier-Stokes equations with the surface tension as a source term. Two different techniques are employed for calculation of the pressure gradient and the continuous surface tension. For an initial static bubble without gravity, the spurious currents and pressure distribution are shown to illustrate the differences between the algorithms for treatment of the source term and between the techniques for calculation of the pressure gradient and the surface tension.

参考文献

[1] B D Nichols;C W Hirt .Methods for Calculating MultiDimensional,Transient Free Surface Flows Past Bodies.[Technical Report LA-UR-75-1932][R].Los Alamos National Laboratory,1975.
[2] C W Hirt;B D Nichols .Volume of Fluid (VOF) Method for Dynamics of Free Boundaries[J].Journal of Computational Physics,1981,39:201-225.
[3] S Osher;J A Sethian .Fronts Propagating with CurvatureDependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics,1988,79:12-49.
[4] M Sussman;P Smereka;S Osher .A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[J].Journal of Computational Physics,1994,114:146159.
[5] C S Peskin .Numerical Analysis of Blood Flow in the Heart[J].Journal of Computational Physics,1977,25:220252.
[6] S O Unverdi;G Tryggvason .Computations of Multi-Fluid Flows[J].Physical Review D,1992,60:70-83.
[7] G Tryggvason;B Bunner;A Esmaeeli et al.A FrontTracking Method for the Computations of Multiphase Flow[J].Journal of Computational Physics,2001,169:708-759.
[8] D Jamet;O Lebaigue;N Coutris et al.The Second Gradient Method for the Direct Numerical Simulation of LiquidVapor Flows with Phase-Change[J].Journal of Computational Physics,2001,169:624-651.
[9] J U Brackbill;D B Kothe;C Zemach .A Continuum Method for Modeling Surface Tension[J].Journal of Computational Physics,1992,100:335-354.
[10] B Lafaurie;C Nardone;R Scardovelli et al.Modelling Merging and Fragmentation in Multiphase Flows with SURFER[J].Journal of Computational Physics,113:134-147.
[11] S Popinet;S Zaleski .A Front-Tracking Algorithm for the Accurate Representation of Surface Tension[J].Int J Numer Meth Fluid,1999,30:775-793.
[12] Y Renardy;M Renardy .PROST:a Parabolic Reconstruction of Surface Tension for the Volume-Of-Fluid Method[J].Journal of Computational Physics,2002,183:400-421.
[13] A Y Tong;Z Wang .A Numerical Method for CapillarityDominant Free Surface Flows[J].Journal of Computational Physics,2007,221:506-523.
[14] E Shirani;N Ashgriz;J Mostaghimi .Interface Pressure Calculation Based on Conservation of Momentum for Front Capturing Methods[J].Journal of Computational Physics,2005,203:154-175.
[15] D J Torres;J U Brackbill .The Point-Set Method:FrontTracking Without Connectivity[J].Journal of Computational Physics,2000,165:620-644.
[16] D Jamet;D Torres;J U Brackbill .On the Theory and Computation of Surface Tension:the Elimination of Parasitic Currents Through Energy Conservation in the Second-Gradient Method[J].Journal of Computational Physics,2002,182:262-276.
[17] S Shin;S I Abdel Khalik;V Daru et al.Accurate Representation of Surface Tension Using the Level Contour Reconstruction Method[J].Journal of Computational Physics,2005,203:493-516.
[18] M M Francois;S J Cummins;E D Dendy et al.A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models Within a Volume Tracking Framework[J].Journal of Computational Physics,2006,213:141-173.
[19] M J Ni;M A Abdou .A Bridge Between Projection Methods and SIMPLE Type Methods for Incompressible Navier-Stokes Equations[J].International Journal for Numerical Methods in Engineering,2007,72:1490.
[20] J B Bell;P Collela;H M Glaz .A Second-Order Projection Method for the Incompressible Navier-Stokes Equations[J].Journal of Computational Physics,1989,85:257.
[21] H Choi;P Moin .Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow[J].Journal of Computational Physics,1994,113:1-4.
[22] S V Patankar;D B Spalding .A Calculation Procedure for Heat,Mass and Momentum Transfer in ThreeDimensional Parabolic Flows[J].International Journal of Heat and Mass Transfer,1972,15:1787-1806.
[23] J P Van Doormaal;G D Raithby .Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows[J].Numerical Heat Transfer,1984,7:147-163.
[24] M J Ni;M A Abdou .Temporal Second-Order Accuracy of SIMPLE-Type Methods for Incompressible Unsteady Flows[J].Numerical Heat Transfer,Part B,2005,46:529-548.
[25] M J Ni;R Munipalli;N B Morley et al.A Current Density Conservative Scheme for Incompressible MHD Flows at Low Magnetic Reynolds Number.Part I:on a Rectangular Mesh[J].Journal of Computational Physics,2007,227:174-204.
[26] M J Ni;R Munipalli;P Huang;et ak .A Current Density Conservative Scheme for Incompressible MHD Flows at Low Magnetic Reynolds Number.Part II:on an Arbitrary Collocated Mesh[J].Journal of Computational Physics,2007,227:205-228.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%