欢迎登录材料期刊网

材料期刊网

高级检索

研究了入射击波作用下纳米铝粉与环氧丙烷快速反应的热动力学行为.利用X射线衍射(XRD)对反应产物成分进行了分析,结果表明:Al2O3不同相产生于不同温度区.反应产物的扫描电镜(SEM)结果显示:反应产物表面发现了一些孔洞,表明纳米铝粉与其亚氧化物的反应是剧烈的.透射电镜(TEM)数据显示:反应产物多为球状,部分为絮状,其颗粒直径处于20~90 nm的范围.纳米铝粉反应过程中,其反应产物表面的聚结与环氧丙烷热分解过程中的氧原子及含氧分子含量限制了纳米铝粉的反应度.

The thermal behavior of aluminum nano-powders reacting with propylene oxide is investigated in normal incident shock waves. The reactive products are evaluated by X-ray diffraction (XRD), which shows that several different phases of Al2O3 are produced in different temperature regions. The scanning electron microscopy (SEM) image of the reactive products shows that some holes, which are produced in the process of aluminum nano-powders violently reacting with suboxides of aluminum, are found on the surface of the products. The data of transmission electron microscopy (TEM) indicate that the agglomeration are mainly in spherical-structure and partly in tenuous-structure and that the grain diameters of the products are within the range of 20~90 nm. The factors, the condensed agglomerations, the content of oxygen atoms and oxygen-containing molecules of propylene oxide in the thermal decomposition, limit the completeness of aluminum nano-powders reactions.

参考文献

[1] Kson Y S;Gromov A A;Ilyin A P et al.The mechanism of combustion of superfine aluminum powders[J].Combustion and Flame,2003,133:385.
[2] Ivanov G V;Tepper F.Activated aluminium as a store energy source for propellant[A].New York:Begell House,1997:636.
[3] Pivkina A;Streletskii A;Kolbanev I;Ul'Yanova P;Frolov Y;Butyagin P;Schoonman J .Mechanochemically activated nano-aluminium: Oxidation behaviour[J].Journal of Materials Science,2004(16/17):5451-5453.
[4] Bukaemskii A A .Physical model of explosive synthesis of ultrafine aluminum oxide[J].Combust Explos Shock Waves,2002,38:360.
[5] A. P. Il'in;E. M. Popenko;A. A. Gromov;Yu. Yu. Shamina;D. V. Tikhonov .Combustion of Agglomerated Ultrafine Aluminum Powders in Air[J].Combustion, Explosion, and Shock Waves,2002(6):665-669.
[6] Moore D S;Son S F;Asay B W .Time-resolved spectral emission of deflagrating nano-Al and nano-MoO3 metastable interstitial composites[J].Propellants,Explosives,Pyrotechnics,2004,29:106.
[7] Dreizin E L;Trunov M A .Surface phenomena in aluminum combustion[J].Combustion and Flame,1995,101:378.
[8] Brzustowdki T A;Glassman I .Heterogeneous combustion[J].Progress in Astronautics and Aeronautics Series,1965,15:41.
[9] YAN Zheng-Xin,WU Jing-He,HU Dong,YANG Xiang-Dong.Agglomeration Evolution of Nano-Particles Aluminium in Normal Incident Shock Wave[J].中国物理快报(英文版),2006(01):217-219.
[10] Hunt E M;Plantier K B;Pantoya M L .Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide[J].Acta Materialia,2004,52:3183.
[11] Kasasev V V;Onischuk A A;Glotov O G .Formation of charged aggregates of Al2O3 nano-particles by combustion of aluminum droplets in air[J].Combustion and Flame,2004,138:40.
[12] Cai Shuhui;Sergey N Rashkeev;Sokrates T Pantelides et al.Atomic scale mechanism of the transformation of γ-alumina to θ-alumina[J].Physical Review Letters,2002,89(23):235501.
[13] Vladimir A.Nasluzov;Vladimir V.Rivanenkov;Alexey M.Shor .Density functional embedded cluster calculatins on lewis acid centers of the alpha-Al_2O_3 (0001) surface:adsorption of a CO probe[J].International Journal of Quantum Chemistry,2002(1):386-402.
[14] Lippens B C;De Boer J H .Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction[J].Acta Crystallographica,1964,17:1312.
[15] Kim JH.;Babushok VI.;Germer TA.;Mulholland GW.;Ehrman SH. .Cosolvent-assisted spray pyrolysis for the generation of metal particles[J].Journal of Materials Research,2003(7):1614-1622.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%