将叶型参数化、试验设计方法、神经网络算法与Pareto类遗传算法相结合,发展了一种平面叶栅多目标优化设计方法.在该算法中,为提高优化效率,提出了并行神经网络算法和改进了NSGA-Ⅱ算法.以极小化三个工况点的总压损失系数为目标函数,将该优化方法应用于某平面叶栅多工况优化设计.与初始叶栅相比,优化后叶栅的总压损失系数在三个工况均有一定的减小,说明该优化方法是有效的.
参考文献
[1] | 刘高联 .平面叶栅气动设计的最优化理论[J].力学学报,1980,10(04):337-345. |
[2] | Gu C G;Miao Y M .Blade Design of Axial-flow Compressors by the Method of Optimal Control Theory.Ⅰ:Physical Model and Mathematical Expression[J].Journal of Turbomachinery,Transactions of the ASME,1987,109(01):99-102. |
[3] | Gu C G;Miao Y M .Blade Design of Axial-flow Compressors by the Method of Optimal Control Theory.Ⅱ:Application of Pontryagin's Maximum Principles,a Sample Calculation and Its Results[J].Journal of Turbomachinery,Transactions of the ASME,1987,109(01):103-107. |
[4] | Shelton M L;Gregory B A .Optimization of a transonic turbine airfoil using artificial intelligence,CFD and cascade testing[ASME GT-1993-161][R].,1993. |
[5] | S. Pierret;R. A. Van den Braembussche .Turbomachinery blade design using a Navier-stokes solver and artificial neural network[J].Journal of turbomachinery,1999(2):326-332. |
[6] | Stephane Burguburu;Clement Toussaint;Christophe Bonhomme;Gilles Leroy .Numerical Optimization of Turbomachinery Bladings[J].Journal of turbomachinery,2004(1):91-100. |
[7] | Deb K.Multi-objective Optimization Using Evolutionary Algorithms[M].Chichester:John Wiley and Sons,Inc,2002:227-424. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%