欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-3500D热模拟机在电场下原位合成Fe-Cu-TiC复合材料,同时在真空炉中分别采用原位合成法及外加TiC颗粒法制备Fe-Cu-TiC复合材料,并对3种方法制取的Fe-Cu-TiC复合材料的显微组织结构及性能进行了对比研究。结果表明:相比真空炉原位合成法,电场作用下Fe-Cu-Ti-C体系能够在较低的温度(754℃)下实现合成反应且反应更加完全;电场下合成试样的相对致密度及显微硬度均高于真空炉下原位合成的试样。在真空炉内原位合成试样时,由于Ti与C反应不完全,生成的TiC颗粒增强相较少,导致其显微硬度低于外加颗粒法制取的试样;当最高加热温度为1000℃时,在真空炉中采用原位合成法及外加颗粒法制得试样的相对致密度没有明显差异。

TiC/Fe-Cu composites were produced by in-situ synthesis under an electric field on a Gleeble-3500D thermal simulator,and in situ synthesis or directly adding adding TiC particles in a vacuum furnace,respectively.The comparision of samples produced by three methods was investigated.The results show that compared with that in-situ synthesized in the vacuum furnace,the Fe-Cu-Ti-C system under an electric field can not only react at a low temperature(754 ℃),but more completely.The relative densities and microhardness of the composites obtained under the electric field are higher than those in-situ synthesized in the vacuum furnace.Due to less TiC particles in-situ synthesized in vacuum furnace by the un-complete reaction between Ti and C,the microhardness of the in-situ synthesized samples in the vacuum furnace is lower than those produced by directly adding TiC particles.However,when the temperature is elevated to 1000 ℃,the relative densities of samples produced using the two different methods in the vacuum furnace have little difference.

参考文献

[1] 孟君晟,王振廷,史晓萍,徐家文.氩弧熔敷原位自生TiCp/Ni60A复合材料组织和耐磨性[J].材料热处理学报,2009(06):174-177.
[2] 胡会娥,甄良,雷廷权,IMAI T.金属基复合材料的高应变速率超塑性[J].材料科学与工艺,2003(04):406-409.
[3] 刘彦强,樊建中,桑吉梅,石力开.粉末冶金法制备金属基复合材料的研究及应用[J].材料导报,2010(23):18-23.
[4] 邓陈虹,葛启录,范爱琴.粉末冶金金属基复合材料的研究现状及发展趋势[J].粉末冶金工业,2011(01):54-59.
[5] 周翔,冯可芹,文敏,李娅,柯思璇,覃康才.体系成分对Fe-Cu-Ti-C体系电场原位合成的影响[J].材料科学与工艺,2011(02):86-91.
[6] 曲在纲;黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2005:36.
[7] M.X. Zhang;Q.D. Hu;B. Huang .Study of formation behavior of TiC in the Fe-Ti-C system during combustion synthesis[J].International Journal of Refractory Metals & Hard Materials,2011(3):356-360.
[8] 王静,伏思静,丁义超.原位合成TiC/Fe基复合材料的组织结构和磨损性能[J].四川大学学报(工程科学版),2008(05):111-115.
[9] 王文娟,冯可芹,杨屹,白晨光,王宏亮,阚细武.原料特征对电场诱导燃烧合成VC/Fe复合材料的影响[J].材料热处理学报,2007(02):1-6.
[10] 刘小平,伏思静.原位合成TiC颗粒增强铁基复合材料的组织和性能[J].机械工程材料,2008(05):41-44.
[11] 冯可芹,杨屹,白晨光,王文娟.预设升温速度对电场作用下Fe-Ti-C体系燃烧合成的影响[J].材料热处理学报,2007(03):26-30.
[12] Zuhair A Munir .Synthesis of TiC,TiC-Cu composites,and TiC-Cu functionally grade materials by electrothermal combustion[J].American Ceramic Society,1998,81(12):3243-3248.
[13] Munir Z A .The use of an electric field as a processing parameter in the combustion synthesis of ceramics and composites[J].Metallurgy and Materials Translation,1996,27:2080-2084.
[14] Loccia A M;Orru R;C ao G.Field-activated pressure-assisted synthesis of NiTi[J].Intermetallics,2003(11):555-557.
[15] 冯可芹,白晨光,杨屹.电场诱导Fe-Ti-C体系低温燃烧合成显微组织演变[J].稀有金属材料与工程,2007(06):1020-1023.
[16] 冯可芹,白晨光,王娟,杨屹,阚细武.电场作用下电流大小对Fe-V-C体系燃烧合成的影响[J].四川大学学报(工程科学版),2007(03):91-95.
[17] Keqin Feng;Yi Yang;Mei Hong;Jinling Wu;Shanshan Lan .Intensified sintering of iron powders under the action of an electric field: Effect of technologic parameter on sintering densification[J].Journal of Materials Processing Technology,2008(1/3):264-269.
[18] 乔亚霞.电场加压辅助燃烧合成技术及电场的作用研究[J].江苏陶瓷,2002(02):8-11.
[19] Bertolino N;Garay J;Anselmi-Tamburini U et al.High-flux current effects in interfacial reactions in Au-Al multilayers[J].Philosophical Magazine,2002,82(08):969-985.
[20] Yoon Choi;Shi-woo Rhee .Effect of carbon sources on the conmbustion synthesis of TiC[J].Materials Science,1995,30:4637-4644.
[21] Z. A. Munir .The effect of external electric fields on the nature and properties of materials synthesized by self-propagating combustion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(2):125-137.
[22] Javier E. Garay;Stephen C. Glade;Umberto Anselmi-Tamburini;Palakkal Asoka-Kumar;Zuhair A. Munir .Electric current enhanced defect mobility in Ni_(3)Ti intermetallics[J].Applied physics letters,2004(4):573-575.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%