综述了硬质无机粒子( RIP)填充聚丙烯( PP)复合材料的増韧机理及其定量判据。大量的研究表明,最典型的增韧机理有逾渗模型理论、银纹化微观增韧机理和柔性界面层理论。在定量分析RIP填充PP复合材料的增强机理方面,主要阐述了两种判据:基体层厚度判据和界面黏结强度判据;并利用所述判据分析了相关文献的数据,得出了如下结论:当RIP平均粒径d<临界粒径dc,体积分数Φf >临界体积分数ΦfC,或平均基体层厚度L<临界基体层厚度Lc;界面相互作用参数B值在[1,2.6]之间时,RIP增强填充PP复合材料的韧性的机会较大。
The works in toughening mechanisms and its quantitative criterion of rigid inorganic particle ( RIP ) filled polypropylene( PP) composites were reviewed. It was extensively reported that the classic toughing mecha-nisms included percolation model theory,crazing micro-mechanical model and flexible inter-layer theory. Two main quantitative criterion in characterizing the toughing mechanism of RIP filling the PP composites quantitatively,ma-trix ligament thickness criterion and interfacial bonding strength criterion were indicated. The related data reported in the references were processed by the criterion indicated above,and the conclusion was gained that the RIP filling PP composites could be toughed probable under the conditions:the average particle size d is smaller than the critical particle size dc,the volume fractionΦf is larger than the critical volume fractionΦfC,or the average matrix ligament thickness L is smaller than critical matrix ligament thickness Lc;the interfacial interaciton parameter B was in the range from 1 to 2. 6.
参考文献
[1] | Machado F;Lima EL;Pinto JC;McKenna TF.In situ preparation of polypropylene/1-butene alloys using a MgCl2-supported Ziegler-Natta catalyst[J].European Polymer Journal,20084(4):1130-1139. |
[2] | K. Jayanarayanan;Sabu Thomas;Kuruvilla Joseph.Morphology, static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly (ethylene terephthalate) blends[J].Composites, Part A. Applied science and manufacturing,20082(2):164-175. |
[3] | Bruno D. Mattos;Andre L. Misso;Pedro H.G. de Cademartori;Edson A. de Lima;Washington L.E. Magalhaes;Darci A. Gatto.Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles[J].Construction and Building Materials,2014Jun.30(Jun.30):60-68. |
[4] | Jan Golebiewski;Andrzej Galeski.Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA[J].Composites science and technology,200715/16(15/16):3442-3447. |
[5] | Peiwei Hu;Huaming Yang.Polypropylene filled with kaolinite-based conductive powders[J].Applied clay science,2013Oct.(Oct.):122-128. |
[6] | K?pplmayr, T.;Milosavljevic, I.;Aigner, M.;Hasslacher, R.;Plank, B.;Salaberger, D.;Miethlinger, J..Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene[J].Polymer Testing,20133(3):535-544. |
[7] | Weon JI;Gam KT;Boo WJ;Sue HJ;Chan CM.Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite[J].Journal of Applied Polymer Science,20066(6):3070-3076. |
[8] | Svoboda, P.;Theravalappil, R.;Svobodova, D.;Mokrejs, P.;Kolomaznik, K.;Mori, K.;Ougizawa, T.;Inoue, T..Elastic properties of polypropylene/ethylene-octene copolymer blends[J].Polymer Testing,20106(6):742-748. |
[9] | Achyut K Panda;R K Singh.Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene[J].燃料化学学报,2011(03):198-202. |
[10] | Omar, M.F.;Akil, H.M.;Ahmad, Z.A..Static and dynamic compressive properties of mica/polypropylene composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20113(3):1567-1576. |
[11] | Jie Zhao;Baoan Li;Xin Li;Yuchun Qin;Chang Li;Shichang Wang.Numerical simulation of novel polypropylene hollow fiber heat exchanger and analysis of its characteristics[J].Applied thermal engineering: Design, processes, equipment, economics,20131/2(1/2):134-141. |
[12] | Lei Shen;Yinghong Chen;Pingli Li.Synergistic catalysis effects of lanthanum oxide in polypropylene/magnesium hydroxide flame retarded system[J].Composites, Part A. Applied science and manufacturing,20128(8):1177-1186. |
[13] | Ji-Zhao Liang;R.K.Y. Li.Brittle-ductile transition in polypropylene filled with glass beads[J].Polymer: The International Journal for the Science and Technology of Polymers,199911(11):3191-3195. |
[14] | Jiang W.;Tjong S.C..Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed[J].Polymer: The International Journal for the Science and Technology of Polymers,20009(9):3479-3482. |
[15] | 杨瑞成;羊海棠;彭采宇;冯辉霞.逾渗理论及聚合物脆韧转变逾渗模型[J].兰州理工大学学报,2005(1):26-30. |
[16] | 于杰;金志浩;周惠久.银纹萌生机制及判据[J].高分子材料科学与工程,1997(06):98-103. |
[17] | Kim GM.;Michler GH..Micromechanical deformation processes in toughened and particle-filled semicrystalline polymers: Part 1. Characterization of deformation processes in dependence on phase morphology[J].Polymer: The International Journal for the Science and Technology of Polymers,199823(23):5689-5697. |
[18] | Chan CM.;Wu JS.;Li JX.;Cheung YK..Polypropylene/calcium carbonate nanocomposites[J].Polymer: The International Journal for the Science and Technology of Polymers,200210(10):2981-2992. |
[19] | W.C.J.Zuiderduin;C.Westzaan;J.Huetink;R.J.Gaymans.Toughening of polypropylene with calcium carbonate particles[J].Polymer: The International Journal for the Science and Technology of Polymers,20031(1):261-275. |
[20] | 欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998(02):12-15,19. |
[21] | 欧玉春;方晓萍;郭庭泰;冯宇鹏.刚性粒子增强增韧聚合物复合材料的制备新技术[J].材料研究学报,2001(1):110-116. |
[22] | Zhang L;Li CZ;Huang R.Toughness mechanism in polypropylene composites: Polypropylene toughened with elastomer and calcium carbonate[J].Journal of Polymer Science, Part B. Polymer Physics,20049(9):1656-1662. |
[23] | Liu ZH.;Zhu XG.;Qi ZN.;Wang FS.;Zhang XD..EFFECT OF MORPHOLOGY ON THE BRITTLE DUCTILE TRANSITION OF POLYMER BLENDS .1. A NEW EQUATION FOR CORRELATING MORPHOLOGICAL PARAMETERS[J].Polymer: The International Journal for the Science and Technology of Polymers,199721(21):5267-5273. |
[24] | Pukanszky B;Moczo J.Morphology and properties of particulate filled polymers[J].Macromolecular symposia,20040(0):115-134. |
[25] | Khunova V;Janigova I;Smatko V;Hurst J.Plasma treatment of particulate polymer composites for analyses by scanning electron microscopy. II. A study of highly filled polypropylene/calcium carbonate composites[J].Polymer Testing,19997(7):501-509. |
[26] | K.W.Kwok;Z.M.Gao;C.L.Choy;X.G.Zhu.Stifness and toughness of polypropylene/glass bead composites[J].Polymer Composites,20031(1):53-59. |
[27] | Leong YW.;Abu Bakar MB.;Ishak ZAM.;Ariffin A.;Pukanszky B..Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites[J].Journal of Applied Polymer Science,20045(5):3315-3326. |
[28] | D. Metin;F. Tihminlioglu;D. Balkose.The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites[J].Composites, Part A. Applied science and manufacturing,20041(1):23-32. |
[29] | Zoltan Demjen;Bela Pukanszky;Jozsef Nagy.Evaluation of interfacial interaction in polypropylene/surface treated CaCO{sub}3 composites[J].Composites, Part A. Applied science and manufacturing,19983(3):323-329. |
[30] | Kun Yang;Qi Yang;Guangxian Li;Yajie Sun;Decai Feng.Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites[J].Materials Letters,20066(6):805-809. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%