欢迎登录材料期刊网

材料期刊网

高级检索

Creep testing was conducted on K40S alloy. The detailed creep deformation and fracture mechanisms under constant load were studied. The results show that the stress exponent ranges between 7 and 14.4 at elevated temperature 973~1173 K, and that the activation energy is approximately 449.1 k J/mol. During creep, the grain boundary sliding cut off primary carbides at the boundary, generating the "O" model cracks. The creep failure mode of K40S alloy is transgranular ductile and cracks originate at the primary carbides. A long carbide and matrix interface is often a preferential path for crack propagation. The creep mechanism is discussed in light of the creep microstructure, the stress exponent and the activation energy.

参考文献

[1] C T Sims;W C Hagel.The Superalloys,New York,John Wiley and Sons[M].,1972
[2] B.Fish .[J].Aerospace America,1988,26:16.
[3] G W Meetham.High Temperature Alloys-Their Exploitable Potential[M].London,1987:23.
[4] Filing code Co-10 cobalt alloy,Alloy Digest,Dec. 1956[Z].
[5] Fumin YANG .Master Degree Thesis,Shenyang Polytechnic University[D].Shenyang,2000.
[6] F Schubert .Schubert:Superalloys Source Book,ASM,Metals Park,OH[Z].,1984.
[7] C R Leverant;B H Kear .Metall[J].Trans,1970,1:491.
[8] C R Leverant;D N Duhl .Metall[J].Trans,1971,2:907.
[9] S Floreen.Elastic-plastic Fracture Secondary Symposium,American Society for Testing and Materials[M].Philadelphia,PA,1983:708.
[10] Jiang Wenhui,Yao Xiangdong,Guan Hengrong,Hu Zhuangqi.CREEP DEFORMATION AND FRACTURE OF DZ40M DIRECTIONALLY SOLIDIFIED COBALT-BASE SUPERALLOY AT HIGH TEMPERATURE[J].中国有色金属学会会刊(英文版),1999(02):269-272.
[11] S Floreen;R Raj.Flow and Fracture at Elevated Temperature[J].ASM InternationalMaterials ParkOH,1985:383.
[12] W.D.Klop;W.F. Brown Jr;C. Gibson.Aerospace Structural Materials Handbook,CINDAS/USAF CRDAHandbook Operation[M].Purdue University, West Lafayette, IN,USA,1998:1237.
[13] R F Decker;J Rowe;J Freeman.Trans.Metall.Soc.of AIME[M].,1960:218.
[14] R S Mishra;D Banerjee .[J].Scripta Metallurgica et Materialia,1994,31(11):1555.
[15] S.Purushothaman;J.K.Tien .[J].Acta Metall,1978,26:519.
[16] R W Evans;B Wilshire.Creep of Metals and Alloys,ed.D. McLean,the Institute of Metals[M].London,1985:295.
[17] T L Dragone;W D Nix .Acta Metall[J].Mater,1992,40(10):2781.
[18] M.Malu;J.K.Tien.[J].Scripta Metallurgica et Materialia,1975(09):1117.
[19] R W Lund;W D Nix .Metall[J].Trans,1975,6:1329.
[20] J T Guo;C Yuan;V Lupinc .Metall. Mater[J].Transactions A,2001,32(05):1103.
[21] F R N Nabarro;H L Devilliers.The Physics of Creep-Creep Resistant Alloy,eds. Taylor and Francis[M].London,1996:25.
[22] K.R.Williams;B.Wilshire.[J].Metal Science Journal,1973(07):176.
[23] F.M.Yang;X.F.Sun;W. Zhang;Y.P. Kang, H.R.Guan and Z.Q.Hu .[J].Materials Letters,2001,49:1604.
[24] Fumin YANG;Xiaofeng SUN;Hengrong Guan;Zhuangqi HU .ACTA Metall[J].Sin,2001,37(03):253.
[25] Wenhui Jiang;Xiangdong YAO;Hengrong Guan;Zhuangqi HU.Trans Nonferrous Met[J].Soc China,1998(08):617.
[26] F R N Nabarro;H L Devilliers.The Physics of Creep-Creep Resistant Alloy,eds. Taylor and Francis[M].London,1996:78.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%