欢迎登录材料期刊网

材料期刊网

高级检索

研究不同温度下2024铝合金的蠕变行为,采用金相显微镜、扫描电镜以及透射电子显微镜观察蠕变后合金的微观组织变化.结果表明:在125~200 ℃蠕变温度下,当蠕变寿命接近100 h时,2024铝合金的蠕变应力随着温度的升高明显下降;与125 ℃相比,150 ℃时合金的蠕变应力下降9.3%,在175 ℃时合金的蠕变应力下降30.3%;当蠕变温度为200 ℃时,该合金的蠕变应力下降幅度达到45.8%;在125~175 ℃下,合金在蠕变过程中的变形机制主要为位错在晶内的滑移;在200℃时,合金晶界开始发生滑移,合金变形由晶界滑移与位错在晶内的滑移协调完成;在合金蠕变断面上存在大量微孔,随着蠕变温度的升高,微孔的尺寸明显变大,当微孔尺寸超过3 μm时,微孔对合金的断裂机制有显著影响;在125和150 ℃下,合金的蠕变断口呈现韧窝型穿晶断裂特征;在175和200 ℃下,合金的蠕变断口呈现沿晶断裂特征.

参考文献

[1] 李含 .2024铝合金薄板的热处理工艺与性能研究[D].西安:西北工业大学,2007.
[2] 赵英涛.美国大型客机结构用铝合金的发展与展望[J].材料工程,1993(05):45.
[3] El-Khalek, AMA .Steady state creep and creep recovery behaviours of pre-aging Al-Si alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):176-181.
[4] GUILLERM C;REQUNA A;PETER D;ESTEBAN D M ELODIE B .Microtomographic study of the evolution of microstructure during creep of an AlSi12CuMgNi alloy reinforced with Al2O3 short fibres[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,487:99-107.
[5] MISHRA H;SATYANARAYANA D V V;NANDY T K;SAGAR P K .Effect of trace impurities on the creep behavior of a near α titanium alloy[J].Scripta Materialia,2008,59:591-594.
[6] Shi, XL;Mishra, RS;Watson, TJ .Effect of temperature and strain rate on tensile behavior of ultrafine-grained aluminum alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):247-252.
[7] Sato, T;Kral, MV .Microstructural evolution of Mg-Al-Ca-Sr alloy during creep[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):369-376.
[8] T. Nakajima;M. Takeda;T. Endo .Accelerated coarsening of precipitates in crept Al-Cu alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):670-673.
[9] WANG J;WU X;XIA K .Creep behavior at elevated temperatures of an Al-Cu-Mg-Ag alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,498:287-290.
[10] DUNNWALD J;El-MAGD E .Description of the creep behaviour of the precipitation-hardened material Al-Cu-Mg alloy 2024 using finite element computations based on microstructure mechanical models[J].Computational Materials Science,1996,7:200-207.
[11] LUMLEY R N;MORTON A J;POLMEAR I J .Enhanced creep resistance in underaged aluminum alloys[J].Materials Science Forum,2002,331/337(03):1495-1500.
[12] 张新明,彭卓凯,邓运来,陈健美,蒋浩.Mg-9Gd-4Y-0.6Mn合金在293~723 K时的变形行为及微观组织演变[J].中南大学学报(自然科学版),2006(02):223-228.
[13] 崔约贤;王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:203.
[14] 郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:97-98.
[15] WALSH J A;JATA K V;STARKE J E A .The influence of Mn dispersoid content and stress state on ductile fracture of 2124 type Al alloys[J].Acta Metallurgy,1989,37(11):2861-2871.
[16] 吴诗悙.金属超塑性变形理论[M].北京:国防大学出版社,1997:112-115.
[17] 徐振兴.断裂力学[M].湘潭:湘潭大学出版社,1985:229.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%