欢迎登录材料期刊网

材料期刊网

高级检索

综述了低温与高应变速率铝基复合材料超塑性的变形机理、制备工艺以及工业应用的研究现状和最新研究成果,并在目前已有研究的基础上展望了超塑性铝基复合材料的广阔应用前景.

参考文献

[1] Nieh T G;Henshall C A;Wadsworth J .Superplasticity at high strain rates in a SiC whisker reinforced A1 alloy[J].Scripta Metallurgica et Materialia,1984,18(12):1405.
[2] 许晓静,王伟,蔡兰.SiCp/LD2铝基复合材料的超塑性[J].机械工程材料,2002(09):20-21,33.
[3] 唐才荣.铝基复合材料的超塑性[J].材料工程,1996(03):17.
[4] Mubuchi M;Higashi K;Langdon T G .An investigation of the role of liquid in Al-Cu-Mg metal matrix composite exhibiting high strain rate superplasticity[J].Acta Metallurgica Et Materialia,1994,42(05):1739.
[5] Zahid G H;Todd R I;Prangnell P 13 .Superplasticity in an aluminum 2124/SiCp composite[J].Mater Sei Techn,1998,14(09):901.
[6] 许晓静,陈康敏,戴峰泽,蔡兰.SiCp增强2024铝基复合材料超塑性的研究[J].金属学报,2002(05):544-548.
[7] Mabuchi M;Higashi K;Inoue K et al.Experimental investigation of superplastic behavior in a 20% Sis N4p/5052 aluminum composite[J].Set Metall Mater,1992,26:1839.
[8] Higashi K;Okada T;Mukai T et al.Superplastic behavior in a mechanically alloyed aluminum composite reinforced with SiC particulates[J].Ser Metall Mater,1992,26:185.
[9] Raj R .A mechanistic basis for high strain rate superplasticity of aluminum based metal matrix composites[J].Materials Science and Engineering,1996,215(1-2):1.
[10] Perevezentsev V N;Higashi K .Theoretical investigation of high strain rate superplasticity[J].Materials Science Forum,1999,304-306:217.
[11] 祝汉良,辛志峰,李志强,王纯孝.高应变速率超塑性研究的新进展[J].航空制造技术,2000(05):13-16.
[12] Azushima A;Kopp R et al.Severe plastic deformation (SPD) processes for metals[J].CIRP Annals-Manuf Techn,2008,57(03):716.
[13] 郭炜,王渠东.大塑性变形制备超细晶复合材料的研究进展[J].锻压技术,2010(01):4-9.
[14] I.V.Alexandrov .Microstructures and Properties of Nanocomposites Obtained through SPTS Consolidation of Powders.[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1998(9):2253-2260.
[15] Yoshinori iwahasgi .The process of grain refinement in equal-channel angular pressing[J].Acta materialia,1998(9):3317-3331.
[16] SEVERE PLASTIC DEFORMATION PROCESSING AND HIGH STRAIN RATE SUPERPLASTICITY IN AN ALUMINUM MATRIX COMPOSITE[J].Scripta materialia,1999(10):1151-1155.
[17] Sabirov I;Kolednik O;Pippan R .Homogenization of metal matrix composites by high-pressure torsion[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36(10):2861.
[18] Z.Y. MA;R.S. MISHRA .Development of Ultrafine-Grained Microstructure and Low Temperature (0.48 T_m) Superplasticity in Friction Stir Processed Al-Mg-Zr[J].Scripta materialia,2005(1):75-80.
[19] Z.Y. Ma;R.S. Mishra;M.W. Mahoney .Superplastic deformation behaviour of friction stir processed 7075Al alloy[J].Acta materialia,2002(17):4419-4430.
[20] 恽鸣 .工业金属薄板的双辊连续铸轧--技术现状与商业前景[J].材料导报,1996,10(增刊):7.
[21] 陈体军;郝远 .颗粒/铝基复合材料制备工艺的现状及发展[J].兵器材料科学与工程,1996,19(05):49.
[22] 何春年,赵乃勤.纳米相增强铝基复合材料制备技术的研究进展[J].兵器材料科学与工程,2005(03):53-57.
[23] Goujon C.;Goeuriot P. .Influence of the content of ceramic phase on the precipitation hardening of Al alloy 7000/AlN nanocomposites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):399-404.
[24] Masafumi Noda;Mitsuji Hirohashi;Kunio Funami .Low Temperature Superplasticity and Its Deformation Mechanism in Grain Refinement of Al-Mg Alloy by Multi-Axial Alternative Forging[J].Materials transactions,2003(11):2288-2297.
[25] 王国峰,夏伟宁,张凯锋.Al2O3颗粒增强Ni-Mn纳米复合材料的超塑性[J].热加工工艺,2011(02):73-75.
[26] F.C. Liu;Z.Y. Ma .Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys[J].Scripta materialia,2010(3):125-128.
[27] Liu F C;Ma Z Y;Chen L Q .Low-temperature superplasticity of Al-Mg-Se alloy produced by friction stir processing[J].Scripta Materialia,2009,60(11):968.
[28] Liu F C;Ma Z Y .Low-temperature superplasticity of friction stir processed A1-Zn-Mg-Cu alloy[J].Scripta Materialia,2008,58(08):667.
[29] Z.Y. Ma;F.C. Liu;R.S. Mishra .Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing[J].Acta materialia,2010(14):4693-4704.
[30] Mabuchi M.;Higashi K. .On accommodation helper mechanism for superplasticity in metal matrix composites[J].Acta materialia,1999(6):1915-1922.
[31] Takayama Y;Tozawa T;Kato H .Superplasticity and thickness of liquid phase in vicinity of solidus temperature in a 7475 aluminum alloy[J].Acta Materialia,1999,47(04):1263.
[32] Koike J;Mabuchi M;Higashi K .In-situ observation of partial melting in superplasticity aluminum alloy composites at high temperature[J].Acta Metallurgica Et Materialia,1995,43(01):199.
[33] Iwasaki H;Mabuchi M;Higashi K .Plastic cavity growth during superplastic flow in AA 7475 A1 alloy containing a small amount of liquid[J].Acta Materialia,2001,49(12):2269.
[34] R. Kaibyshev;F. Musin;D. Gromov .Effect of liquid phase on superplastic behavior of a modified 6061 aluminum alloy[J].Scripta materialia,2002(9):569-575.
[35] H. E. Hu;L. Zhen;T. Imai .Strain rate sensitivity of a high strain rate superplastic TiN_p/2014 Al composite[J].Journal of Materials Processing Technology,2010(5):734-740.
[36] Lagos M.;Duque H. .Two-phase theory for the superplastic flow[J].International Journal of Plasticity,2001(3):369-386.
[37] 蒋宇梅,颜金华.颗粒增强铝基复合材料研究与应用进展[J].中国科技信息,2009(20):38-39.
[38] 乐永康.颗粒增强铝基复合材料的研究现状[J].材料开发与应用,1997(05):33.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%