欢迎登录材料期刊网

材料期刊网

高级检索

应用同伦分析方法(HAM)研究了四边固支对称蜂窝夹层板主共振情况下的非线性动力学特性。将铝基蜂窝芯层等效为一正交异性层,等效弹性参数由修正后的Gibson方程得出。基于经典叠层板理论(CPT)和几何大变形理论建立了四边固支蜂窝夹层板受横向激振力作用下的受迫振动微分方程,通过振型正交化将蜂窝夹层板受迫振动微分方程简化成双模态下的动力学控制方程,得到了主共振情况下的平均方程,研究了不同结构参数对动力学特性的影响。计算结果表明,蜂窝夹层板的幅频特性曲线类似单自由度Dulling方程响应曲线,随着结构参数的增大,硬特性明显加大并且振幅的峰值明显减小,所得结论可为蜂窝夹层板的设计和实际应用提供理论依据。

Nonlinear dynamics characteristics of symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries in primary resonance case were investigated using the homotopy analysis method (HAM). The honeycomb core of aluminum matrix was equivalent to a thick layer of orthotropic material whose equivalent elastic constants were calculated by the modified Gibson's formula. Based on the classical laminated plate theory(CPT) and geometric large deformation theory, the forced vibration differential equations under transverse exciting force were derived. By means of vibration mode orthogonalization, the differential equations were simplified into dynamic control equations with dual-mode, and the average equations of primary resonance was obtained. Then the influences of different structural parameters on dynamic characteristics were studied. Numerical results show that the amplitude - frequency curves of honeycomb sandwich panels correspond to the response curves of Duffing equation with single degree. With the increase of the structural parameters, the obvious enhancement of the hard characteristic, and the remarkable decrease of the peak value of amplitude were observed. The conclusion can be applied to designing honeycomb sandwich panels and provide a theoretical basis for practical applications.

参考文献

[1] Yu S D,Cleghorn W L. Free flexural vibration analysis ofsymmetric honeycomb panels [J]. Journal of Sound andVibration, 2005,284(1): 189-204.
[2] Li Y Q, Jin Z Q. Free flexural vibration analysis of symmetricrectangular honeycomb panels with SCSC edge supports [J].Composite Structures, 2008,83(2) : 154-158.
[3] Li Y Q, Zhu D W. Free flexural vibration analysis ofsymmetric rectangular honeycomb panels using the improvedReddy,s third-order plate theory [J]. Composite Structures,2009, 88(1): 33-39.
[4] Leissa A W, Martin A F. Vibration buckling of rectangularcomposite plates with variable fiber spacing [J]. CompositeStructures* 1990,14(4) : 339-357.
[5] Malekzadeh P. A differential quadrature nonlinear freevibration analysis of laminated composite skew thin plates [J].Thin-Walled Structures, 2007,45(2): 237-250.
[6] Nilsson E,Nilsson A C. Prediction and measurement of somedynamic properties of sandwich structures with honeycomb andfoam cores [J]. Journal of Sound and Vibration,2002,251(3): 409-430.
[7] 徐胜今,孔宪仁,王本利,等.正交异性蜂窝夹层板动、静力学问题的等效分析方法[J].复合材料学报,2000,17(3): 92-95.
[8] Singha M K,Ganapathi M. Large amplitude free flexuralvibrations of laminated composite skew plates [J]. Int J Non-linear Mech, 2004, 39(10): 1709-1720.
[9] Sundararajana N, Prakash T,Ganapathi M. Nonlinear freeflexural vibrations of functionally graded rectangular and skewplates under thermal environments [J]. Finite Element AnalDes, 2005, 42(2): 152-168.
[10] Singha M K, Rupesh D. Nonlinear vibration of symmetricallylaminated composite skew plates by finite element method [J].International Journal of Non-Linear Mechanics,2007,42(9):1144-1152.
[11] Kim T W, Kim J H. Nonlinear vibration of viscoelasticlaminated composite plates [J]. International Journal of Solidsand Structures, 2002, 39(10): 2857-2870.
[12] Argyris J, Tenek L,Olofsson L. Nonlinear free vibrations ofcomposite plates [ J ]. Computer Methods in AppliedMechanics and Engineering, 1994,115(1) . 1-51.
[13] Swamy N V,Sinha P K. Nonlinear free vibration analysis oflaminated composite shells in hygrothermal environments [J].Composite Structures, 2007,77(4) : 475-483.
[14] 富明慧,尹久仁.蜂窝芯层的等效弹性参数[J].力学学报,1999, 31(1): 113-118.
[15] Liao S J. A new branch of solutions of boundary - layer flowsover an impermeable stretched plate [J]. Int J Heat MassTransfer, 2005, 48(12): 2529-2539.
[16] Liao S J. An explicit totally analytic approximation of Blasiusviscous flow problems [J]. Int J Non - Linear Mech, 1999,34(4): 759-778.
[17] Liao S J. Series solutions of unsteady boundary layer flowsover a stretching flat plate [J]. Stud Appl Math, 2006,117(3): 239-264.
[18] Liao S J. Beyond perturbation: Introduction to the homotopyanalysis method [M]. Boca Raton: Chapman & Hall/CRC,2003.
[19] 李锋.四边固支蜂窝夹层板非线性动力学分析[D].沈阳:东北大学,2010.
[20] 周履,范陚群.复合材料力学[M].北京:髙等教育出版社,1991.
[21] 李永强,李锋,何永亮.四边固支铝基蜂窝夹层板弯曲自由振动分析[J].复合材料学报,2011, 28(3): 210-216.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%